Maxwell Equations Integral
Tags: #physics #maxwell #electricity #magnetismEquation
$$\oiint (\vec{D}\cdot \vec{n}) \mathrm{d}^{2}A=Q_{\text{free,included}}\\ \oiint (\vec{B}\cdot \vec{n}) \mathrm{d}^{2}A=0 \\ \oint \vec{E} \mathrm{d}\vec{s}=-\frac{\mathrm{d}\Phi}{\mathrm{d}t}\\ \oint \vec{H} \mathrm{d}\vec{s}=I_{\text{free,included}}+\frac{\mathrm{d}\Psi }{\mathrm{d}t}$$Latex Code
\oiint (\vec{D}\cdot \vec{n}) \mathrm{d}^{2}A=Q_{\text{free,included}}\\ \oiint (\vec{B}\cdot \vec{n}) \mathrm{d}^{2}A=0 \\ \oint \vec{E} \mathrm{d}\vec{s}=-\frac{\mathrm{d}\Phi}{\mathrm{d}t}\\ \oint \vec{H} \mathrm{d}\vec{s}=I_{\text{free,included}}+\frac{\mathrm{d}\Psi }{\mathrm{d}t}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Latex code for integral form of the Maxwell Equations. I will briefly introduce the notations in this formulation.
: The electric displacement
: The electric field strength
: The magnetic flux density
: The magnetic field strength
In the formulation, the first formula (1) describes the property of electric displacement
Related Documents
- Physics Formulary
- Maxwell’s Equations in Differential Form
- Maxwell's Equations in Differential Form - University of Toronto
Reply