Mean Squared Error MSE
Tags: #machine learning #metricEquation
$$\text{MSE} = \frac{1}{n} \sum^{n}_{i=1} (Y_{i} - \hat{Y}_{i}) ^ {2}$$Latex Code
\text{MSE} = \frac{1}{n} \sum^{n}_{i=1} (Y_{i} - \hat{Y}_{i}) ^ {2}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
$$ \text{MSE} $$: denotes the Mean Squared Error
$$ Y_{i} $$: denotes the true value to predict.
$$ \hat{Y}_{i} $$: denotes the predicted value as the output of a model, usually a regression model.