Mechanic Oscillations

Tags: #physics #mechanic #oscillations

Equation

$$m\ddot{x}=F(t)-k\dot{x}-Cx \\ F(t)=\hat{F}\cos(\omega t) \\ -m\omega^2 x=F-Cx-ik\omega x \\ \omega_0^2=C/m \\ x=\frac{F}{m(\omega_0^2-\omega^2)+ik\omega} \\ \dot{x}=\frac{F}{i\sqrt{Cm}\delta+k} \\ \delta=\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega} \\ Z=F/\dot{x} \\ Q=\frac{\sqrt{Cm}}{k}$$

Latex Code

                                 m\ddot{x}=F(t)-k\dot{x}-Cx \\ 
            F(t)=\hat{F}\cos(\omega t) \\ 
            -m\omega^2 x=F-Cx-ik\omega x \\ 
            \omega_0^2=C/m \\ 
            x=\frac{F}{m(\omega_0^2-\omega^2)+ik\omega} \\ 
            \dot{x}=\frac{F}{i\sqrt{Cm}\delta+k} \\ 
            \delta=\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega} \\ 
            Z=F/\dot{x} \\
            Q=\frac{\sqrt{Cm}}{k}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            m\ddot{x}=F(t)-k\dot{x}-Cx \\ 
            F(t)=\hat{F}\cos(\omega t) \\ 
            -m\omega^2 x=F-Cx-ik\omega x \\ 
            \omega_0^2=C/m \\ 
            x=\frac{F}{m(\omega_0^2-\omega^2)+ik\omega} \\ 
            \dot{x}=\frac{F}{i\sqrt{Cm}\delta+k} \\ 
            \delta=\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega} \\ 
            Z=F/\dot{x} \\
            Q=\frac{\sqrt{Cm}}{k}
        

Explanation

Latex code for the Mechanic Oscillations. I will briefly introduce the notations in this formulation.

  • : Construction of spring with constant
  • : Damping constant
  • : Periodic force
  • : Velocity
  • : Impedance of the system
  • : The quality of the system
  • Velocity resonance frequency: The frequency with minimal

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos