Model-Agnostic Meta-Learning MAML

Tags: #machine learning #meta learning

Equation

$$\min_{\theta} \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta^{'}_{i}}) = \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta_{i} - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{i}} (f_{\theta}) })$$

Latex Code

                                 \min_{\theta} \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta^{'}_{i}}) = \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta_{i} - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{i}} (f_{\theta}) })
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

1.1 MAML Meta-Objective

Equation



Latex Code

            \min_{\theta} \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta^{'}_{i}}) = \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta_{i} - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{i}} (f_{\theta}) })
        

Explanation





Model-Agnostic Meta-Learning (MAML) tries to find an initial parameter vector ? that can be quickly adapted via meta-task gradients to task-specific optimal parameter vectors.

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos