Non-linear Wave Equation
Tags: #physics #non-linear waveEquation
$$\frac{d^2x}{dt^2}-\varepsilon\omega_0(1-\beta x^2)\frac{dx}{dt}+\omega_0^2x=0 \\ \frac{d}{dt}\left\{\frac{1}{2}\left(\frac{dx}{dt}\right)^2+\frac{1}{2} \omega_0^2x^2\right\}= \varepsilon\omega_0(1-\beta x^2)\left(\frac{dx}{dt}\right)^2 \\ \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}-\underbrace{au\frac{\partial u}{\partial x}}_{\rm non-lin}+ \underbrace{b^2\frac{\partial ^3u}{\partial x^3}}_{\rm dispersive}=0 \\ u(x-ct)=\frac{-d}{\cosh^2(e(x-ct))}$$Latex Code
\frac{d^2x}{dt^2}-\varepsilon\omega_0(1-\beta x^2)\frac{dx}{dt}+\omega_0^2x=0 \\ \frac{d}{dt}\left\{\frac{1}{2}\left(\frac{dx}{dt}\right)^2+\frac{1}{2} \omega_0^2x^2\right\}= \varepsilon\omega_0(1-\beta x^2)\left(\frac{dx}{dt}\right)^2 \\ \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}-\underbrace{au\frac{\partial u}{\partial x}}_{\rm non-lin}+ \underbrace{b^2\frac{\partial ^3u}{\partial x^3}}_{\rm dispersive}=0 \\ u(x-ct)=\frac{-d}{\cosh^2(e(x-ct))}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\frac{d^2x}{dt^2}-\varepsilon\omega_0(1-\beta x^2)\frac{dx}{dt}+\omega_0^2x=0 \\ \frac{d}{dt}\left\{\frac{1}{2}\left(\frac{dx}{dt}\right)^2+\frac{1}{2} \omega_0^2x^2\right\}= \varepsilon\omega_0(1-\beta x^2)\left(\frac{dx}{dt}\right)^2 \\ \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}-\underbrace{au\frac{\partial u}{\partial x}}_{\rm non-lin}+ \underbrace{b^2\frac{\partial ^3u}{\partial x^3}}_{\rm dispersive}=0 \\ u(x-ct)=\frac{-d}{\cosh^2(e(x-ct))}
Explanation
Related Documents
Related Videos
Comments
-
-
I'm just going to put it out there: I want to pass this test.
-
Reply