Non-linear Wave Equation

Tags: #physics #non-linear wave

Equation

$$\frac{d^2x}{dt^2}-\varepsilon\omega_0(1-\beta x^2)\frac{dx}{dt}+\omega_0^2x=0 \\ \frac{d}{dt}\left\{\frac{1}{2}\left(\frac{dx}{dt}\right)^2+\frac{1}{2} \omega_0^2x^2\right\}= \varepsilon\omega_0(1-\beta x^2)\left(\frac{dx}{dt}\right)^2 \\ \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}-\underbrace{au\frac{\partial u}{\partial x}}_{\rm non-lin}+ \underbrace{b^2\frac{\partial ^3u}{\partial x^3}}_{\rm dispersive}=0 \\ u(x-ct)=\frac{-d}{\cosh^2(e(x-ct))}$$

Latex Code

                                 \frac{d^2x}{dt^2}-\varepsilon\omega_0(1-\beta x^2)\frac{dx}{dt}+\omega_0^2x=0 \\
            \frac{d}{dt}\left\{\frac{1}{2}\left(\frac{dx}{dt}\right)^2+\frac{1}{2} \omega_0^2x^2\right\}= \varepsilon\omega_0(1-\beta x^2)\left(\frac{dx}{dt}\right)^2 \\
            \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}-\underbrace{au\frac{\partial u}{\partial x}}_{\rm non-lin}+ \underbrace{b^2\frac{\partial ^3u}{\partial x^3}}_{\rm dispersive}=0 \\
            u(x-ct)=\frac{-d}{\cosh^2(e(x-ct))}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            \frac{d^2x}{dt^2}-\varepsilon\omega_0(1-\beta x^2)\frac{dx}{dt}+\omega_0^2x=0 \\
            \frac{d}{dt}\left\{\frac{1}{2}\left(\frac{dx}{dt}\right)^2+\frac{1}{2} \omega_0^2x^2\right\}= \varepsilon\omega_0(1-\beta x^2)\left(\frac{dx}{dt}\right)^2 \\
            \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}-\underbrace{au\frac{\partial u}{\partial x}}_{\rm non-lin}+ \underbrace{b^2\frac{\partial ^3u}{\partial x^3}}_{\rm dispersive}=0 \\
            u(x-ct)=\frac{-d}{\cosh^2(e(x-ct))}
        

Explanation


Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos