Normal Gaussian Distribution

Tags: #Math #Statistics

Equation

$$X \sim \mathcal{N}(\mu,\sigma^2) \\ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\exp{[-\frac{(x-\mu)^{2}}{2\sigma^{2}}]}$$

Latex Code

                                 X \sim \mathcal{N}(\mu,\sigma^2) \\ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\exp{[-\frac{(x-\mu)^{2}}{2\sigma^{2}}]}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

        X \sim \mathcal{N}(\mu,\sigma^2) \\ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\exp{[-\frac{(x-\mu)^{2}}{2\sigma^{2}}]}
        

Explanation

X denotes the random variable which follows the normal distribution. \mu denotes the mean value and \sigma denotes the standard deviation.

Comments

Write Your Comment

Upload Pictures and Videos