Normal Gaussian Distribution
Tags: #Math #StatisticsEquation
$$X \sim \mathcal{N}(\mu,\sigma^2) \\ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\exp{[-\frac{(x-\mu)^{2}}{2\sigma^{2}}]}$$Latex Code
X \sim \mathcal{N}(\mu,\sigma^2) \\ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\exp{[-\frac{(x-\mu)^{2}}{2\sigma^{2}}]}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
X \sim \mathcal{N}(\mu,\sigma^2) \\ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\exp{[-\frac{(x-\mu)^{2}}{2\sigma^{2}}]}
Explanation
X denotes the random variable which follows the normal distribution. \mu denotes the mean value and \sigma denotes the standard deviation.
Reply