Optical System Matrix Methods
Tags: #physics #optics #Matrix MethodsEquation
$$\left(\begin{array}{c}n_2\alpha_2\\y_2\end{array}\right)=M \left(\begin{array}{c}n_1\alpha_1\\y_1\end{array}\right) \\ {\rm Tr}(M)=1$$Latex Code
\left(\begin{array}{c}n_2\alpha_2\\y_2\end{array}\right)=M \left(\begin{array}{c}n_1\alpha_1\\y_1\end{array}\right) \\ {\rm Tr}(M)=1
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\left(\begin{array}{c}n_2\alpha_2\\y_2\end{array}\right)=M \left(\begin{array}{c}n_1\alpha_1\\y_1\end{array}\right) \\ {\rm Tr}(M)=1
Explanation
Latex code for the Optical System Matrix Methods, optics. I will briefly introduce the notations in this formulation.
- : A light ray
- : the angle with the optical axis
- : the distance to the optical axis
- : is a product of elementary matrices
- : Transfer along length l
- : TRefraction at a surface with dioptric power D
Reply