Optical System Matrix Methods

Tags: #physics #optics #Matrix Methods

Equation

$$\left(\begin{array}{c}n_2\alpha_2\\y_2\end{array}\right)=M \left(\begin{array}{c}n_1\alpha_1\\y_1\end{array}\right) \\ {\rm Tr}(M)=1$$

Latex Code

                                 \left(\begin{array}{c}n_2\alpha_2\\y_2\end{array}\right)=M \left(\begin{array}{c}n_1\alpha_1\\y_1\end{array}\right) \\
{\rm Tr}(M)=1
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            \left(\begin{array}{c}n_2\alpha_2\\y_2\end{array}\right)=M \left(\begin{array}{c}n_1\alpha_1\\y_1\end{array}\right) \\
            {\rm Tr}(M)=1
        

Explanation

Latex code for the Optical System Matrix Methods, optics. I will briefly introduce the notations in this formulation.

  • : A light ray
  • : the angle with the optical axis
  • : the distance to the optical axis
  • : is a product of elementary matrices
  • : Transfer along length l
  • : TRefraction at a surface with dioptric power D

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos