Phase Transitions
Tags: #physics #thermodynamics #phase transitionsEquation
$$\Delta S_m=S_m^\alpha - S_m^\beta=\frac{r_{\beta\alpha}}{T_0} \\ S_m=\left(\frac{\partial G_m}{\partial T}\right)_{p} \\ \frac{dp}{dT}=\frac{S_m^\alpha-S_m^\beta}{V_m^\alpha-V_m^\beta}= \frac{r_{\beta\alpha}}{(V_m^\alpha-V_m^\beta)T} \\ p=p_0{\rm e}^{-r_{\beta\alpha/RT}} \\ r_{\beta\alpha}=r_{\alpha\beta} \\ r_{\beta\alpha}=r_{\gamma\alpha}-r_{\gamma\beta} \\ \frac{dp}{dT}=\frac{S_m^\alpha-S_m^\beta}{V_m^\alpha-V_m^\beta}= \frac{r_{\beta\alpha}}{(V_m^\alpha-V_m^\beta)T} \\ p=p_0{\rm e}^{-r_{\beta\alpha/RT}}$$Latex Code
\Delta S_m=S_m^\alpha - S_m^\beta=\frac{r_{\beta\alpha}}{T_0} \\ S_m=\left(\frac{\partial G_m}{\partial T}\right)_{p} \\ \frac{dp}{dT}=\frac{S_m^\alpha-S_m^\beta}{V_m^\alpha-V_m^\beta}= \frac{r_{\beta\alpha}}{(V_m^\alpha-V_m^\beta)T} \\ p=p_0{\rm e}^{-r_{\beta\alpha/RT}} \\ r_{\beta\alpha}=r_{\alpha\beta} \\ r_{\beta\alpha}=r_{\gamma\alpha}-r_{\gamma\beta} \\ \frac{dp}{dT}=\frac{S_m^\alpha-S_m^\beta}{V_m^\alpha-V_m^\beta}= \frac{r_{\beta\alpha}}{(V_m^\alpha-V_m^\beta)T} \\ p=p_0{\rm e}^{-r_{\beta\alpha/RT}}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\Delta S_m=S_m^\alpha - S_m^\beta=\frac{r_{\beta\alpha}}{T_0} \\ S_m=\left(\frac{\partial G_m}{\partial T}\right)_{p} \\ \frac{dp}{dT}=\frac{S_m^\alpha-S_m^\beta}{V_m^\alpha-V_m^\beta}= \frac{r_{\beta\alpha}}{(V_m^\alpha-V_m^\beta)T} \\ p=p_0{\rm e}^{-r_{\beta\alpha/RT}} \\ r_{\beta\alpha}=r_{\alpha\beta} \\ r_{\beta\alpha}=r_{\gamma\alpha}-r_{\gamma\beta} \\ \frac{dp}{dT}=\frac{S_m^\alpha-S_m^\beta}{V_m^\alpha-V_m^\beta}= \frac{r_{\beta\alpha}}{(V_m^\alpha-V_m^\beta)T} \\ p=p_0{\rm e}^{-r_{\beta\alpha/RT}}
Explanation
Latex code for the Phase Transitions. Phase transitions are isothermal and isobaric. I will briefly introduce the notations in this formulation.
- : ideal gas one finds for the vapor line at some distance from the critical point.
Reply