Power Series for Complex Variables

Tags: #math #complex variables

Equation

$$e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+...+\frac{z^{n}}{n!}+...\\ \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-...\\ \cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-...\\ \ln (1+z)=1-\frac{z^{2}}{2!}+\frac{z^{3}}{3!}-...\\ (1+z)^{n}=1+nz+\frac{n(n-1)}{2!}z^{2}+\frac{n(n-1)(n-2)}{3!}z^{3}+...$$

Latex Code

                                 e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+...+\frac{z^{n}}{n!}+...\\
\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-...\\
\cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-...\\
\ln (1+z)=1-\frac{z^{2}}{2!}+\frac{z^{3}}{3!}-...\\
(1+z)^{n}=1+nz+\frac{n(n-1)}{2!}z^{2}+\frac{n(n-1)(n-2)}{3!}z^{3}+...
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation






Comments

Write Your Comment

Upload Pictures and Videos