Power Series for Complex Variables
Tags: #math #complex variablesEquation
$$e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+...+\frac{z^{n}}{n!}+...\\ \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-...\\ \cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-...\\ \ln (1+z)=1-\frac{z^{2}}{2!}+\frac{z^{3}}{3!}-...\\ (1+z)^{n}=1+nz+\frac{n(n-1)}{2!}z^{2}+\frac{n(n-1)(n-2)}{3!}z^{3}+...$$Latex Code
e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+...+\frac{z^{n}}{n!}+...\\ \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-...\\ \cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-...\\ \ln (1+z)=1-\frac{z^{2}}{2!}+\frac{z^{3}}{3!}-...\\ (1+z)^{n}=1+nz+\frac{n(n-1)}{2!}z^{2}+\frac{n(n-1)(n-2)}{3!}z^{3}+...
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Reply