Prisms and Dispersion

Tags: #physics #optics #prisms #dispersion

Equation

$$\delta=\theta_i+\theta_{i'}+\alpha \\ n=\frac{\sin(\frac{1}{2}(\delta_{\rm min}+\alpha))}{\sin(\frac{1}{2}\alpha)} \\ D=\frac{d\delta}{d\lambda}=\frac{d\delta}{dn}\frac{dn}{d\lambda} \\ \frac{d\delta}{dn}=\frac{2\sin(\frac{1}{2}\alpha)}{\cos(\frac{1}{2}(\delta_{\rm min}+\alpha))}$$

Latex Code

                                 \delta=\theta_i+\theta_{i'}+\alpha \\
            n=\frac{\sin(\frac{1}{2}(\delta_{\rm min}+\alpha))}{\sin(\frac{1}{2}\alpha)} \\
            D=\frac{d\delta}{d\lambda}=\frac{d\delta}{dn}\frac{dn}{d\lambda} \\
            \frac{d\delta}{dn}=\frac{2\sin(\frac{1}{2}\alpha)}{\cos(\frac{1}{2}(\delta_{\rm min}+\alpha))}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            \delta=\theta_i+\theta_{i'}+\alpha \\
            n=\frac{\sin(\frac{1}{2}(\delta_{\rm min}+\alpha))}{\sin(\frac{1}{2}\alpha)} \\
            D=\frac{d\delta}{d\lambda}=\frac{d\delta}{dn}\frac{dn}{d\lambda} \\
            \frac{d\delta}{dn}=\frac{2\sin(\frac{1}{2}\alpha)}{\cos(\frac{1}{2}(\delta_{\rm min}+\alpha))}
        

Explanation

A light ray passing through a prism is refracted twice and aquires a deviation from its original direction.

  • : is apex angle
  • : is the angle between the incident angle and a line perpendicular to the surface
  • : is the angle between the ray leaving the prism and a line perpendicular to the surface
  • : is refractive index of the prism
  • : is dispersion of a prism

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos