Quantum Wave Functions
Tags: #physics #quantum #waveEquation
$$\Phi(k,t)=\frac{1}{\sqrt{h}}\int\Psi(x,t){\rm e}^{-ikx}dx \\ \Psi(x,t)=\frac{1}{\sqrt{h}}\int\Phi(k,t){\rm e}^{ikx}dk \\ v_{\rm g}=p/m \\ E=\hbar\omega \\ \left\langle f(t) \right\rangle=\int\hspace{-1.5ex}\int\hspace{-1.5ex}\int\Psi^* f\Psi d^3V \\ \left\langle f_p(t) \right\rangle=\int\hspace{-1.5ex}\int\hspace{-1.5ex}\int\Phi^*f\Phi d^3V_p \\ \left\langle f(t) \right\rangle=\left\langle \Phi|f|\Phi \right\rangle \\ \left\langle \Phi|\Phi \right\rangle=\left\langle \Psi|\Psi \right\rangle=1$$Latex Code
\Phi(k,t)=\frac{1}{\sqrt{h}}\int\Psi(x,t){\rm e}^{-ikx}dx \\ \Psi(x,t)=\frac{1}{\sqrt{h}}\int\Phi(k,t){\rm e}^{ikx}dk \\ v_{\rm g}=p/m \\ E=\hbar\omega \\ \left\langle f(t) \right\rangle=\int\hspace{-1.5ex}\int\hspace{-1.5ex}\int\Psi^* f\Psi d^3V \\ \left\langle f_p(t) \right\rangle=\int\hspace{-1.5ex}\int\hspace{-1.5ex}\int\Phi^*f\Phi d^3V_p \\ \left\langle f(t) \right\rangle=\left\langle \Phi|f|\Phi \right\rangle \\ \left\langle \Phi|\Phi \right\rangle=\left\langle \Psi|\Psi \right\rangle=1
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\Phi(k,t)=\frac{1}{\sqrt{h}}\int\Psi(x,t){\rm e}^{-ikx}dx \\ \Psi(x,t)=\frac{1}{\sqrt{h}}\int\Phi(k,t){\rm e}^{ikx}dk \\ v_{\rm g}=p/m \\ E=\hbar\omega \\ \left\langle f(t) \right\rangle=\int\hspace{-1.5ex}\int\hspace{-1.5ex}\int\Psi^* f\Psi d^3V \\ \left\langle f_p(t) \right\rangle=\int\hspace{-1.5ex}\int\hspace{-1.5ex}\int\Phi^*f\Phi d^3V_p \\ \left\langle f(t) \right\rangle=\left\langle \Phi|f|\Phi \right\rangle \\ \left\langle \Phi|\Phi \right\rangle=\left\langle \Psi|\Psi \right\rangle=1
Explanation
Latex code for Quantum Wave Functions. If light is considered to consist of particles, the wavelength of scattered light can be derived as above. I will briefly introduce the notations in this formulation.
- : Wave Function
- : Group Velocity
- : Energy
- : Measure with the probability P of finding a particle somewhere. The expectation value
- of a quantity f of a system.
Reply