Riemannian Tensor

Tags: #physics #riemannian rensor

Equation

$$R^{\mu}_{v \alpha \beta}T^{v}=\triangledown_{\alpha}\triangledown_{\beta}T^{\mu}-\triangledown_{\beta}\triangledown_{\alpha}T^{\mu} \\ \triangledown_{j}a^{i}=\partial_{j}a^{i}+\Gamma^{i}_{jk}a^{k} \\ \triangledown_{j}a_{i}=\partial_{j}a_{i}-\Gamma^{k}_{ij}a_{k} \\ \Gamma^{i}_{jk}=\frac{\partial^{2} \bar{x}^{l}}{\partial{x^{j}}\partial{x^{k}}}\frac{\partial{x^{i}}}{\partial{\bar{x}^{l}}}$$

Latex Code

                                 R^{\mu}_{v \alpha \beta}T^{v}=\triangledown_{\alpha}\triangledown_{\beta}T^{\mu}-\triangledown_{\beta}\triangledown_{\alpha}T^{\mu} \\
\triangledown_{j}a^{i}=\partial_{j}a^{i}+\Gamma^{i}_{jk}a^{k} \\
\triangledown_{j}a_{i}=\partial_{j}a_{i}-\Gamma^{k}_{ij}a_{k} \\
\Gamma^{i}_{jk}=\frac{\partial^{2} \bar{x}^{l}}{\partial{x^{j}}\partial{x^{k}}}\frac{\partial{x^{i}}}{\partial{\bar{x}^{l}}}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction


Latex code for the riemannian tensor. I will briefly introduce the notations in this formulation.

  • The Riemann tensor is defined as: , where the covariant derivate is given by and .
  • The Christoffel symbols is

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos