Risk-Neutral Valuation and Power Contracts
Tags: #Financial #EconomicsEquation
$$\frac{\mathrm{d}S(t)}{S(t)} = (r - \delta) \mathrm{d}t + \sigma \mathrm{d} \tilt{Z}(t) \\ \tilt{Z}(t) = Z(t) + \phi t \\ V(S(t), t) = e^{-r(T-t)} E^{*}[V(S(T), T) | S(T)] \\ F^{p}_{t, T}(S^{a}) = S^{a}(t) e ^{ (-r + a(r-\delta) + \frac{1}{2} a(a-1)\sigma^{2})(T-t)}$$Latex Code
\frac{\mathrm{d}S(t)}{S(t)} = (r - \delta) \mathrm{d}t + \sigma \mathrm{d} \tilt{Z}(t) \\ \tilt{Z}(t) = Z(t) + \phi t \\ V(S(t), t) = e^{-r(T-t)} E^{*}[V(S(T), T) | S(T)] \\ F^{p}_{t, T}(S^{a}) = S^{a}(t) e ^{ (-r + a(r-\delta) + \frac{1}{2} a(a-1)\sigma^{2})(T-t)}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\frac{\mathrm{d}S(t)}{S(t)} = (r - \delta) \mathrm{d}t + \sigma \mathrm{d} \tilt{Z}(t) \\ \tilt{Z}(t) = Z(t) + \phi t \\ V(S(t), t) = e^{-r(T-t)} E^{*}[V(S(T), T) | S(T)] \\ F^{p}_{t, T}(S^{a}) = S^{a}(t) e ^{ (-r + a(r-\delta) + \frac{1}{2} a(a-1)\sigma^{2})(T-t)}
Explanation
Latex code for Risk-Neutral Valuation and Power Contracts.
- : Payoff a power contract at time T
- : Price of the power contract
- : Risk-neutral equations
Reply