Risk-Neutral Valuation and Power Contracts

Tags: #Financial #Economics

Equation

$$\frac{\mathrm{d}S(t)}{S(t)} = (r - \delta) \mathrm{d}t + \sigma \mathrm{d} \tilt{Z}(t) \\ \tilt{Z}(t) = Z(t) + \phi t \\ V(S(t), t) = e^{-r(T-t)} E^{*}[V(S(T), T) | S(T)] \\ F^{p}_{t, T}(S^{a}) = S^{a}(t) e ^{ (-r + a(r-\delta) + \frac{1}{2} a(a-1)\sigma^{2})(T-t)}$$

Latex Code

                                 \frac{\mathrm{d}S(t)}{S(t)} = (r - \delta) \mathrm{d}t + \sigma \mathrm{d} \tilt{Z}(t) \\
            \tilt{Z}(t) = Z(t) + \phi t \\
            V(S(t), t) = e^{-r(T-t)} E^{*}[V(S(T), T) | S(T)] \\
            F^{p}_{t, T}(S^{a}) = S^{a}(t) e ^{ (-r + a(r-\delta) + \frac{1}{2} a(a-1)\sigma^{2})(T-t)}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            \frac{\mathrm{d}S(t)}{S(t)} = (r - \delta) \mathrm{d}t + \sigma \mathrm{d} \tilt{Z}(t) \\
            \tilt{Z}(t) = Z(t) + \phi t \\
            V(S(t), t) = e^{-r(T-t)} E^{*}[V(S(T), T) | S(T)] \\
            F^{p}_{t, T}(S^{a}) = S^{a}(t) e ^{ (-r + a(r-\delta) + \frac{1}{2} a(a-1)\sigma^{2})(T-t)}
        

Explanation

Latex code for Risk-Neutral Valuation and Power Contracts.

  • : Payoff a power contract at time T
  • : Price of the power contract
  • : Risk-neutral equations

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos