Spherical Harmonics Equation
Tags: #math #spherical harmonicsEquation
$$[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}(\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}) ] Y^{m}_{l} + l(l+1) Y^{m}_{l}=0 \\ Y^{m}_{l}(\theta,\phi)=\sqrt{\frac{2l+1}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}}P^{m}_{l}(\cos \theta) e^{im \phi} \times \begin{cases}(-1)^{m} & m\ge 0 \\ 1 & m <0 \end{cases}$$Latex Code
[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}(\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}) ] Y^{m}_{l} + l(l+1) Y^{m}_{l}=0 \\ Y^{m}_{l}(\theta,\phi)=\sqrt{\frac{2l+1}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}}P^{m}_{l}(\cos \theta) e^{im \phi} \times \begin{cases}(-1)^{m} & m\ge 0 \\ 1 & m <0 \end{cases}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Explanation
- Spherical Harmonics Equation
- Spherical Harmonics Solution :
Reply