Student t-Distribution

Tags: #Math #Statistics

Equation

$$f(t) = \frac{\Gamma(\frac{v + 1}{2})}{\sqrt{v\pi}\Gamma(v/2)} (1+\frac{t^{2}}{v})^{-(v+1)/2}, \\ F(t) = \frac{1}{2} + x \Gamma(\frac{v+1}{2}) \times \frac{2^{F_{1}}(1/2,\frac{v+1}{2};3/2;-\frac{x^{2}}{v})}{\sqrt{\pi v} \Gamma(\frac{v}{2})}, \\ F(t) = 1 - \frac{1}{2} I_{x(t)} (\frac{v}{2}, \frac{1}{2}), x(t)=\frac{v}{t^{2} + v}$$

Latex Code

                                 f(t) = \frac{\Gamma(\frac{v + 1}{2})}{\sqrt{v\pi}\Gamma(v/2)} (1+\frac{t^{2}}{v})^{-(v+1)/2}, \\
            F(t) = \frac{1}{2} + x \Gamma(\frac{v+1}{2}) \times \frac{2^{F_{1}}(1/2,\frac{v+1}{2};3/2;-\frac{x^{2}}{v})}{\sqrt{\pi v} \Gamma(\frac{v}{2})}, \\
            F(t) = 1 - \frac{1}{2} I_{x(t)} (\frac{v}{2}, \frac{1}{2}), x(t)=\frac{v}{t^{2} + v}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation


$$f(t) = \frac{\Gamma(\frac{v + 1}{2})}{\sqrt{v\pi}\Gamma(v/2)} (1+\frac{t^{2}}{v})^{-(v+1)/2} $$ $$F(t) = \frac{1}{2} + x \Gamma(\frac{v+1}{2}) \times \frac{2^{F_{1}}(1/2,\frac{v+1}{2};3/2;-\frac{x^{2}}{v})}{\sqrt{\pi v} \Gamma(\frac{v}{2}) } $$ $$F(t) = 1 - \frac{1}{2} I_{x(t)} (\frac{v}{2}, \frac{1}{2}), x(t)=\frac{v}{t^{2} + v}$$

Latex Code

            f(t) = \frac{\Gamma(\frac{v + 1}{2})}{\sqrt{v\pi}\Gamma(v/2)} (1+\frac{t^{2}}{v})^{-(v+1)/2}, \\
            F(t) = \frac{1}{2} + x \Gamma(\frac{v+1}{2}) \times \frac{2^{F_{1}}(1/2,\frac{v+1}{2};3/2;-\frac{x^{2}}{v})}{\sqrt{\pi v} \Gamma(\frac{v}{2})}, \\
            F(t) = 1 - \frac{1}{2} I_{x(t)} (\frac{v}{2}, \frac{1}{2}), x(t)=\frac{v}{t^{2} + v}
        

Explanation

Latex code for the Student t-Distribution. The Student t-Distribution t_{v} is a continuous distribution that generalize the standard normal distribution. But the t-Distribution t_{v} has heavier tails.

  • PDF of Student t-Distribution: $$f(t) = \frac{\Gamma(\frac{v + 1}{2})}{\sqrt{v\pi}\Gamma(v/2)} (1+\frac{t^{2}}{v})^{-(v+1)/2}$$
  • CDF of Student t-Distribution: $$F(t) = \frac{1}{2} + x \Gamma(\frac{v+1}{2}) \times \frac{2^{F_{1}}(1/2,\frac{v+1}{2};3/2;-\frac{x^{2}}{v})}{\sqrt{\pi v} \Gamma(\frac{v}{2})}$$
  • Hypergeometric function : $$2^{F_{1}}(a,b;c;z)$$

Related Documents

Related Videos

Discussion

Comment to Make Wishes Come True

Leave your wishes (e.g. Passing Exams) in the comments and earn as many upvotes as possible to make your wishes come true


  • Dawn Hart
    Getting a pass on this test would be a dream come true.
    2023-03-13 00:00

    Reply


    Phyllis Collins reply to Dawn Hart
    Gooood Luck, Man!
    2023-03-30 00:00:00.0

    Reply


  • Kathryn Olson
    I really don't want to fail this test.
    2023-06-19 00:00

    Reply


    Kathy Young reply to Kathryn Olson
    Best Wishes.
    2023-07-02 00:00:00.0

    Reply


  • Tracy Shepard
    The pressure is on to pass this exam.
    2023-11-18 00:00

    Reply


    Justin Turner reply to Tracy Shepard
    Nice~
    2023-11-23 00:00:00.0

    Reply