Support Vector Machine SVM

Tags: #machine learning #svm

Equation

$$\max_{w,b} \frac{2}{||w||} \\ s.t.\ y_{i}(w^{T}x_{i} + b) \geq 1, i=1,2,...,m \\ L(w,b,\alpha)=\frac{1}{2}||w||^2 + \sum^{m}_{i=1}a_{i}(1-y_{i}(w^{T}x_{i} + b))$$

Latex Code

                                 \max_{w,b} \frac{2}{||w||} \\
            s.t.\ y_{i}(w^{T}x_{i} + b) \geq 1, i=1,2,...,m  \\ 
            L(w,b,\alpha)=\frac{1}{2}||w||^2 + \sum^{m}_{i=1}a_{i}(1-y_{i}(w^{T}x_{i} + b))
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation


Find optimal hyper plane

Dual problem Lagrangian Relaxation

Latex Code

            \max_{w,b} \frac{2}{||w||} \\
            s.t.\ y_{i}(w^{T}x_{i} + b) \geq 1, i=1,2,...,m  \\ 
            L(w,b,\alpha)=\frac{1}{2}||w||^2 + \sum^{m}_{i=1}a_{i}(1-y_{i}(w^{T}x_{i} + b))
        

Explanation

Latex code for Support Vector Machine (SVM).

  • : Dual problem Lagrangian Relaxation
  • : Weight of Linear Classifier
  • : Classifier
  • : Decision Boundary

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos