Support Vector Machine SVM
Tags: #machine learning #svmEquation
$$\max_{w,b} \frac{2}{||w||} \\ s.t.\ y_{i}(w^{T}x_{i} + b) \geq 1, i=1,2,...,m \\ L(w,b,\alpha)=\frac{1}{2}||w||^2 + \sum^{m}_{i=1}a_{i}(1-y_{i}(w^{T}x_{i} + b))$$Latex Code
\max_{w,b} \frac{2}{||w||} \\ s.t.\ y_{i}(w^{T}x_{i} + b) \geq 1, i=1,2,...,m \\ L(w,b,\alpha)=\frac{1}{2}||w||^2 + \sum^{m}_{i=1}a_{i}(1-y_{i}(w^{T}x_{i} + b))
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Find optimal hyper plane
Dual problem Lagrangian Relaxation
Latex Code
\max_{w,b} \frac{2}{||w||} \\ s.t.\ y_{i}(w^{T}x_{i} + b) \geq 1, i=1,2,...,m \\ L(w,b,\alpha)=\frac{1}{2}||w||^2 + \sum^{m}_{i=1}a_{i}(1-y_{i}(w^{T}x_{i} + b))
Explanation
Latex code for Support Vector Machine (SVM).
- : Dual problem Lagrangian Relaxation
- : Weight of Linear Classifier
- : Classifier
- : Decision Boundary
Reply