The general solution of Wave Equation

Tags: #physics #general solution #waves

Equation

$$\frac{\partial^2 u(x,t)}{\partial t^2}=\sum_{m=0}^{N}\left(b_m\frac{\partial ^m}{\partial x^m}\right)u(x,t) \\ u(x,t)=\int\limits_{-\infty}^{\infty}\left(a(k){\rm e}^{i(kx-\omega_1(k)t)}+ b(k){\rm e}^{i(kx-\omega_2(k)t)}\right)dk \\ u(x,t)=A{\rm e}^{i(kx-\omega t)} \\ \omega_j=\omega_j(k)$$

Latex Code

                                 \frac{\partial^2 u(x,t)}{\partial t^2}=\sum_{m=0}^{N}\left(b_m\frac{\partial ^m}{\partial x^m}\right)u(x,t) \\ 
            u(x,t)=\int\limits_{-\infty}^{\infty}\left(a(k){\rm e}^{i(kx-\omega_1(k)t)}+ b(k){\rm e}^{i(kx-\omega_2(k)t)}\right)dk \\
            u(x,t)=A{\rm e}^{i(kx-\omega t)} \\
            \omega_j=\omega_j(k)
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            \frac{\partial^2 u(x,t)}{\partial t^2}=\sum_{m=0}^{N}\left(b_m\frac{\partial ^m}{\partial x^m}\right)u(x,t) \\ 
            u(x,t)=\int\limits_{-\infty}^{\infty}\left(a(k){\rm e}^{i(kx-\omega_1(k)t)}+ b(k){\rm e}^{i(kx-\omega_2(k)t)}\right)dk \\
            u(x,t)=A{\rm e}^{i(kx-\omega t)} \\
            \omega_j=\omega_j(k)
        

Explanation

The general solution of is given by above.


Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos