The general solution of Wave Equation
Tags: #physics #general solution #wavesEquation
$$\frac{\partial^2 u(x,t)}{\partial t^2}=\sum_{m=0}^{N}\left(b_m\frac{\partial ^m}{\partial x^m}\right)u(x,t) \\ u(x,t)=\int\limits_{-\infty}^{\infty}\left(a(k){\rm e}^{i(kx-\omega_1(k)t)}+ b(k){\rm e}^{i(kx-\omega_2(k)t)}\right)dk \\ u(x,t)=A{\rm e}^{i(kx-\omega t)} \\ \omega_j=\omega_j(k)$$Latex Code
\frac{\partial^2 u(x,t)}{\partial t^2}=\sum_{m=0}^{N}\left(b_m\frac{\partial ^m}{\partial x^m}\right)u(x,t) \\ u(x,t)=\int\limits_{-\infty}^{\infty}\left(a(k){\rm e}^{i(kx-\omega_1(k)t)}+ b(k){\rm e}^{i(kx-\omega_2(k)t)}\right)dk \\ u(x,t)=A{\rm e}^{i(kx-\omega t)} \\ \omega_j=\omega_j(k)
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\frac{\partial^2 u(x,t)}{\partial t^2}=\sum_{m=0}^{N}\left(b_m\frac{\partial ^m}{\partial x^m}\right)u(x,t) \\ u(x,t)=\int\limits_{-\infty}^{\infty}\left(a(k){\rm e}^{i(kx-\omega_1(k)t)}+ b(k){\rm e}^{i(kx-\omega_2(k)t)}\right)dk \\ u(x,t)=A{\rm e}^{i(kx-\omega t)} \\ \omega_j=\omega_j(k)
Explanation
The general solution of is given by above.
Reply