The Stationary Phase Method Wave Equation
Tags: #physics #stationary phaseEquation
$$\int\limits_{-\infty}^\infty a(k){\rm e}^{i(kx-\omega(k)t)}dk\approx \sum_{i=1}^{N}\sqrt{\frac{2\pi}{\frac{d^2\omega(k_i)}{dk_i^2}}} \exp\left[-i\mbox{$\frac{1}{4}$}\pi+i(k_ix-\omega(k_i)t)\right]$$Latex Code
                                 \int\limits_{-\infty}^\infty a(k){\rm e}^{i(kx-\omega(k)t)}dk\approx \sum_{i=1}^{N}\sqrt{\frac{2\pi}{\frac{d^2\omega(k_i)}{dk_i^2}}} \exp\left[-i\mbox{$\frac{1}{4}$}\pi+i(k_ix-\omega(k_i)t)\right]
                            
                        Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
            \int\limits_{-\infty}^\infty a(k){\rm e}^{i(kx-\omega(k)t)}dk\approx \sum_{i=1}^{N}\sqrt{\frac{2\pi}{\frac{d^2\omega(k_i)}{dk_i^2}}} \exp\left[-i\mbox{$\frac{1}{4}$}\pi+i(k_ix-\omega(k_i)t)\right]
                
    Explanation
Related Documents
Related Videos
Comments
- 
          
I'm just going to put it out there: I want to pass this test.
 - 
          
 - 
          
 

Reply