Thermal Heat Capacity

Tags: #physics #thermodynamics #heat capacity

Equation

$$C_p-C_V=T\left(\frac{\partial p}{\partial T}\right)_{V}\cdot\left(\frac{\partial V}{\partial T}\right)_{p}=-T\left(\frac{\partial V}{\partial T}\right)_{p}^2\left(\frac{\partial p}{\partial V}\right)_{T}\geq0 \\ \displaystyle C_X=T\left(\frac{\partial S}{\partial T}\right)_{X} \\ \displaystyle C_p=\left(\frac{\partial H}{\partial T}\right)_{p} \\ \displaystyle C_V=\left(\frac{\partial U}{\partial T}\right)_{V} \\ C_{mp}-C_{mV}=R$$

Latex Code

                                 C_p-C_V=T\left(\frac{\partial p}{\partial T}\right)_{V}\cdot\left(\frac{\partial V}{\partial T}\right)_{p}=-T\left(\frac{\partial V}{\partial T}\right)_{p}^2\left(\frac{\partial p}{\partial V}\right)_{T}\geq0 \\
            \displaystyle C_X=T\left(\frac{\partial S}{\partial T}\right)_{X} \\
            \displaystyle C_p=\left(\frac{\partial H}{\partial T}\right)_{p} \\
            \displaystyle C_V=\left(\frac{\partial U}{\partial T}\right)_{V} \\
            C_{mp}-C_{mV}=R
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            C_p-C_V=T\left(\frac{\partial p}{\partial T}\right)_{V}\cdot\left(\frac{\partial V}{\partial T}\right)_{p}=-T\left(\frac{\partial V}{\partial T}\right)_{p}^2\left(\frac{\partial p}{\partial V}\right)_{T}\geq0 \\
            \displaystyle C_X=T\left(\frac{\partial S}{\partial T}\right)_{X} \\
            \displaystyle C_p=\left(\frac{\partial H}{\partial T}\right)_{p} \\
            \displaystyle C_V=\left(\frac{\partial U}{\partial T}\right)_{V} \\
            C_{mp}-C_{mV}=R
        

Explanation

Latex code for the Thermodynamics Introduction. I will briefly introduce the notations in this formulation.

  • : The specific heat at constant at X
  • : The specific heat at constant pressure
  • : The specific heat at constant volume

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos