Thermodynamic Potential

Tags: #physics #thermodynamics

Equation

$$dG=-SdT+Vdp+\sum_i\mu_idn_i \\ \displaystyle\mu=\left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_j} \\ V=\sum_{i=1}^c n_i\left(\frac{\partial V}{\partial n_i}\right)_{n_j,p,T}:=\sum_{i=1}^c n_i V_i \\ \begin{aligned} V_m&=&\sum_i x_i V_i\\ 0&=&\sum_i x_i dV_i\end{aligned}$$

Latex Code

                                 dG=-SdT+Vdp+\sum_i\mu_idn_i \\
            \displaystyle\mu=\left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_j} \\
            V=\sum_{i=1}^c n_i\left(\frac{\partial V}{\partial n_i}\right)_{n_j,p,T}:=\sum_{i=1}^c n_i V_i \\
            \begin{aligned} V_m&=&\sum_i x_i V_i\\ 0&=&\sum_i x_i dV_i\end{aligned}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            dG=-SdT+Vdp+\sum_i\mu_idn_i \\
            \displaystyle\mu=\left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_j} \\
            V=\sum_{i=1}^c n_i\left(\frac{\partial V}{\partial n_i}\right)_{n_j,p,T}:=\sum_{i=1}^c n_i V_i \\
            \begin{aligned} V_m&=&\sum_i x_i V_i\\ 0&=&\sum_i x_i dV_i\end{aligned}
        

Explanation

Latex code for the Thermodynamic Potential. I will briefly introduce the notations in this formulation.

  • : thermodynamic potential.
  • : partial volume of component i.

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos