Thermodynamic Potential
Tags: #physics #thermodynamicsEquation
$$dG=-SdT+Vdp+\sum_i\mu_idn_i \\ \displaystyle\mu=\left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_j} \\ V=\sum_{i=1}^c n_i\left(\frac{\partial V}{\partial n_i}\right)_{n_j,p,T}:=\sum_{i=1}^c n_i V_i \\ \begin{aligned} V_m&=&\sum_i x_i V_i\\ 0&=&\sum_i x_i dV_i\end{aligned}$$Latex Code
dG=-SdT+Vdp+\sum_i\mu_idn_i \\ \displaystyle\mu=\left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_j} \\ V=\sum_{i=1}^c n_i\left(\frac{\partial V}{\partial n_i}\right)_{n_j,p,T}:=\sum_{i=1}^c n_i V_i \\ \begin{aligned} V_m&=&\sum_i x_i V_i\\ 0&=&\sum_i x_i dV_i\end{aligned}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
dG=-SdT+Vdp+\sum_i\mu_idn_i \\ \displaystyle\mu=\left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_j} \\ V=\sum_{i=1}^c n_i\left(\frac{\partial V}{\partial n_i}\right)_{n_j,p,T}:=\sum_{i=1}^c n_i V_i \\ \begin{aligned} V_m&=&\sum_i x_i V_i\\ 0&=&\sum_i x_i dV_i\end{aligned}
Explanation
Latex code for the Thermodynamic Potential. I will briefly introduce the notations in this formulation.
- : thermodynamic potential.
- : partial volume of component i.
Related Documents
Related Videos
Comments
-
-
-
The anxiety of this exam is overwhelming; I hope I pass.
Reply