Thermodynamics Definitions

Tags: #physics #thermodynamics

Equation

f(x,y,z)=0dz=(zx)ydx+(zy)xdy(xy)z(yz)x(zx)y=1εmF(x,y,z)=F(εx,εy,εz)mF(x,y,z)=xFx+yFy+zFz

Latex Code

1
2
3
4
5
                     f(x,y,z)=0 \\
dz=\left(\frac{\partial z}{\partial x}\right)_{y}dx+\left(\frac{\partial z}{\partial y}\right)_{x}dy \\
\left(\frac{\partial x}{\partial y}\right)_{z}\cdot\left(\frac{\partial y}{\partial z}\right)_{x}\cdot\left(\frac{\partial z}{\partial x}\right)_{y}=-1 \\
\varepsilon^m F(x,y,z)=F(\varepsilon x,\varepsilon y,\varepsilon z) \\
mF(x,y,z)=x\frac{\partial F}{\partial x}+y\frac{\partial F}{\partial y}+z\frac{\partial F}{\partial z}

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

1
2
3
4
5
f(x,y,z)=0 \\
dz=\left(\frac{\partial z}{\partial x}\right)_{y}dx+\left(\frac{\partial z}{\partial y}\right)_{x}dy \\
\left(\frac{\partial x}{\partial y}\right)_{z}\cdot\left(\frac{\partial y}{\partial z}\right)_{x}\cdot\left(\frac{\partial z}{\partial x}\right)_{y}=-1 \\
\varepsilon^m F(x,y,z)=F(\varepsilon x,\varepsilon y,\varepsilon z) \\
mF(x,y,z)=x\frac{\partial F}{\partial x}+y\frac{\partial F}{\partial y}+z\frac{\partial F}{\partial z}

Explanation

Latex code for the Thermodynamics Introduction. I will briefly introduce the notations in this formulation.

  • : The total differential dz
  • A homogeneous function of degree m
  • : The isochoric pressure coefficient
  • : The isothermal compressibility
  • : The isobaric volume coefficient
  • : The adiabatic compressibility
  • : The ideal gas follows

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos