Thermodynamics Ideal Mixtures

Tags: #physics #thermodynamics #ideal mixtures

Equation

$$U_{\rm mixture}=\sum_i n_i U^0_i \\ H_{\rm mixture}=\sum_i n_i H^0_i \\ S_{\rm mixture}=n\sum_i x_i S^0_i+\Delta S_{\rm mix} \\ \Delta S_{\rm mix}=-nR\sum\limits_i x_i\ln(x_i)$$

Latex Code

                                 U_{\rm mixture}=\sum_i n_i U^0_i \\ 
            H_{\rm mixture}=\sum_i n_i H^0_i \\ 
            S_{\rm mixture}=n\sum_i x_i S^0_i+\Delta S_{\rm mix} \\
            \Delta S_{\rm mix}=-nR\sum\limits_i x_i\ln(x_i)
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            U_{\rm mixture}=\sum_i n_i U^0_i \\ 
            H_{\rm mixture}=\sum_i n_i H^0_i \\ 
            S_{\rm mixture}=n\sum_i x_i S^0_i+\Delta S_{\rm mix} \\
            \Delta S_{\rm mix}=-nR\sum\limits_i x_i\ln(x_i)
        

Explanation

Latex code for the Ideal Mixtures. I will briefly introduce the notations in this formulation.

  • : one component in a second gives rise to an increase in the boiling point
  • : one component in a second gives rise to decrease of the freezing point

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos