Thermodynamics Statistical Basis

Tags: #physics #thermodynamics

Equation

$$P=N!\prod_i\frac{g_i^{n_i}}{n_i!} \\ n_i=\frac{N}{Z}g_i\exp\left(-\frac{W_i}{kT}\right) \\ Z=\sum\limits_ig_i\exp(-W_i/kT) \\ Z=\frac{V(2\pi mkT)^{3/2}}{h^3} \\ \text{Entropy in Thermodynamic Equilibrium} \\ S=\frac{U}{T}+kN\ln\left(\frac{Z}{N}\right)+kN\approx\frac{U}{T}+k\ln\left(\frac{Z^N}{N!}\right) \\ \text{Ideal gas} \\ S=kN+kN\ln\left(\frac{V(2\pi mkT)^{3/2}}{Nh^3}\right)$$

Latex Code

                                 P=N!\prod_i\frac{g_i^{n_i}}{n_i!} \\
            n_i=\frac{N}{Z}g_i\exp\left(-\frac{W_i}{kT}\right) \\
            Z=\sum\limits_ig_i\exp(-W_i/kT) \\
            Z=\frac{V(2\pi mkT)^{3/2}}{h^3} \\
            \text{Entropy in Thermodynamic Equilibrium} \\
            S=\frac{U}{T}+kN\ln\left(\frac{Z}{N}\right)+kN\approx\frac{U}{T}+k\ln\left(\frac{Z^N}{N!}\right) \\
            \text{Ideal gas} \\
            S=kN+kN\ln\left(\frac{V(2\pi mkT)^{3/2}}{Nh^3}\right)
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            P=N!\prod_i\frac{g_i^{n_i}}{n_i!} \\
            n_i=\frac{N}{Z}g_i\exp\left(-\frac{W_i}{kT}\right) \\
            Z=\sum\limits_ig_i\exp(-W_i/kT) \\
            Z=\frac{V(2\pi mkT)^{3/2}}{h^3} \\
            \text{Entropy in Thermodynamic Equilibrium} \\
            S=\frac{U}{T}+kN\ln\left(\frac{Z}{N}\right)+kN\approx\frac{U}{T}+k\ln\left(\frac{Z^N}{N!}\right) \\
            \text{Ideal gas} \\
            S=kN+kN\ln\left(\frac{V(2\pi mkT)^{3/2}}{Nh^3}\right)
        

Explanation

Latex code for the Thermodynamics Statistical Basis. I will briefly introduce the notations in this formulation.

  • : number of possibilities
  • : number of particles
  • : number of possible energy levels
  • : g-fold degeneracy
  • : The occupation numbers in equilibrium(with the maximum value for P)
  • : State sum Z is a normalization constant
  • : one component in a second gives rise to decrease of the freezing point

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos