Uniform Distribution

Tags: #Math #Statistics

Equation

$$X \sim U(a,b) \\ f(x)=\frac{1}{b-a} \text{for} a \le x \le b \text{else} 0 \\ F(x)=\frac{x-a}{b-a} \text{for} a \le x \le b, 1 \text{for} x > b, 0 \text{for} x < a$$

Latex Code

                                 X \sim U(a,b) \\
f(x)=\frac{1}{b-a} \text{for} a \le x \le b \text{else} 0 \\
F(x)=\frac{x-a}{b-a} \text{for} a \le x \le b, 1 \text{for} x > b, 0 \text{for} x < a
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation


$$X \sim U(a,b)$$ $$f(x)=\frac{1}{b-a} \text{for} a \le x \le b \text{else} 0$$ $$F(x)=\frac{x-a}{b-a} \text{for} a \le x \le b, 1 \text{for} x > b, 0 \text{for} x < a $$

Latex Code

            X \sim U(a,b) \\
            f(x)=\frac{1}{b-a} \text{for} a \le x \le b \text{else} 0 \\
            F(x)=\frac{x-a}{b-a} \text{for} a \le x \le b, 1 \text{for} x > b, 0 \text{for} x < a 
        

Explanation

Latex code for the Uniform Distribution.

  • Lower Bound parameter: $$a$$
  • Upper Bound parameter: $$b$$
  • PDF for Uniform Distribution: $$f(x)=\frac{1}{b-a} \text{for} a \le x \le b \text{else} 0$$
  • CDF for Uniform Distribution: $$F(x)=\frac{x-a}{b-a} \text{for} a \le x \le b, 1 \text{for} x > b, 0 \text{for} x < a$$
  • Mean for Uniform Distribution: $$\frac{a+b}{2}$$
  • Variance for Uniform Distribution: $$\frac{(b-a)^{2}}{12}$$

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos