Wasserstein Distance Optimal Transport

Tags: #machine learning #wasserstein

Equation

$$W_{p}(P,Q)=(\inf_{J \in J(P,Q)} \int{||x-y||^{p}dJ(X,Y)})^\frac{1}{p}$$

Latex Code

                                 W_{p}(P,Q)=(\inf_{J \in J(P,Q)} \int{||x-y||^{p}dJ(X,Y)})^\frac{1}{p}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            W_{p}(P,Q)=(\inf_{J \in J(P,Q)} \int{||x-y||^{p}dJ(X,Y)})^\frac{1}{p}
        

Explanation

Latex code for the Wasserstein Distance (Optimal Transport Distance). I will briefly introduce the notations in this formulation.

  • : Wasserstein distance p power between two distributions P and Q
  • : Power p of distance moving distributions P towards Q

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos