Elliptic Paraboloid
Tags: #Math #GeometryEquation
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)}}{c} $$Latex Code
\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)}}{c}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)}}{c}
Explanation
Latex code for Elliptic Paraboloid.
- : Center Coordinates of Elliptic Paraboloid.
- : Length of Axis x
- : Length of Axis y
- : Length of Axis z
Reply