Elliptic Paraboloid

Tags: #Math #Geometry

Equation

$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)}}{c} $$

Latex Code

                                 \frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)}}{c}

                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            \frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)}}{c}
        

Explanation

Latex code for Elliptic Paraboloid.

  • : Center Coordinates of Elliptic Paraboloid.
  • : Length of Axis x
  • : Length of Axis y
  • : Length of Axis z

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos