gaussian process

Tags: #math #gaussian process

Equation

$$\log p(y|X) \propto -[y^{T}(K + \sigma^{2}I)^{-1}y+\log|K + \sigma^{2}I|] \\ f(X)=\[f(x_{1}),f(x_{2}),...,f(x_{N}))\]^{T} \sim \mathcal{N}(\mu, K_{X,X}) \\ f_{*}|X_{*},X,y \sim \mathcal{N}(\mathbb{E}(f_{*}),\text{cov}(f_{*})) \\ \text{cov}(f_{*})=K_{X_{*},X_{*}}-K_{X_{*},X}[K_{X,X}+\sigma^{2}I]^{-1}K_{X,X_{*}}$$

Latex Code

                                 \log p(y|X) \propto -[y^{T}(K + \sigma^{2}I)^{-1}y+\log|K + \sigma^{2}I|] \\
f(X)=\[f(x_{1}),f(x_{2}),...,f(x_{N}))\]^{T} \sim \mathcal{N}(\mu, K_{X,X}) \\
f_{*}|X_{*},X,y \sim \mathcal{N}(\mathbb{E}(f_{*}),\text{cov}(f_{*})) \\
\text{cov}(f_{*})=K_{X_{*},X_{*}}-K_{X_{*},X}[K_{X,X}+\sigma^{2}I]^{-1}K_{X,X_{*}}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation


Joint Gaussian Distribution assumption

Probabilistic framework for GP

Prediction on new unseen data

Latex Code

            // Joint Gaussian Distribution assumption
            f(X)=\[f(x_{1}),f(x_{2}),...,f(x_{N}))\]^{T} \sim \mathcal{N}(\mu, K_{X,X})

            // Probabilistic framework for GP
            \log p(y|X) \propto -[y^{T}(K + \sigma^{2}I)^{-1}y+\log|K + \sigma^{2}I|]

            // Prediction on new unseen data
            f_{*}|X_{*},X,y \sim \mathcal{N}(\mathbb{E}(f_{*}),\text{cov}(f_{*})) \\

            \mathbb{E}(f_{*}) = \mu_{X_{*}}+K_{X_{*},X}[K_{X,X}+\sigma^{2}I]^{-1}(y-\mu_{x}) \\

            \text{cov}(f_{*})=K_{X_{*},X_{*}}-K_{X_{*},X}[K_{X,X}+\sigma^{2}I]^{-1}K_{X,X_{*}}
        

Explanation

Gaussian process assumes that the output of N function are not independent but correlated. It assumes the collection of N function values, represented by N-dimensional vector f, has a joint Gaussian distribution with mean vector and covariance matrix(kernel matrix). The predicted value of n^{*} test values are given by mean and variance as \mathbb{E}(f_{*}) and \text{cov}(f_{*}) respectively. See below link Deep Kernel Learning for more details.

Comments

Write Your Comment

Upload Pictures and Videos