Parity

Tags: #physics #quantum

Equation

$${\cal P}\psi(x)=\psi(-x) \\ \psi(x)= \underbrace{\frac{1}{2} (\psi(x)+\psi(-x))}_{\rm even:~\hbox{$\psi^+$}}+ \underbrace{\frac{1}{2} (\psi(x)-\psi(-x))}_{\rm odd:~\hbox{$\psi^-$}} \\ \psi^+= \frac{1}{2} (1+{\cal P})\psi(x,t) \\ \psi^-= \frac{1}{2} (1-{\cal P})\psi(x,t)$$

Latex Code

                                 {\cal P}\psi(x)=\psi(-x) \\
            \psi(x)= \underbrace{\frac{1}{2} (\psi(x)+\psi(-x))}_{\rm even:~\hbox{$\psi^+$}}+ \underbrace{\frac{1}{2} (\psi(x)-\psi(-x))}_{\rm odd:~\hbox{$\psi^-$}} \\
            \psi^+= \frac{1}{2} (1+{\cal P})\psi(x,t) \\
            \psi^-= \frac{1}{2} (1-{\cal P})\psi(x,t)
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            {\cal P}\psi(x)=\psi(-x) \\
            \psi(x)= \underbrace{\frac{1}{2} (\psi(x)+\psi(-x))}_{\rm even:~\hbox{$\psi^+$}}+ \underbrace{\frac{1}{2} (\psi(x)-\psi(-x))}_{\rm odd:~\hbox{$\psi^-$}} \\
            \psi^+= \frac{1}{2} (1+{\cal P})\psi(x,t) \\
            \psi^-= \frac{1}{2} (1-{\cal P})\psi(x,t)
        

Explanation

Latex code for the Parity Equation. If the wavefunction is split into even and odd functions, it can be expanded into eigenfunctions of P. I will briefly introduce the notations in this formulation.

  • : parity operator
  • : Even Function
  • : Odd Function

Related Documents

Related Videos

Discussion

Comment to Make Wishes Come True

Leave your wishes (e.g. Passing Exams) in the comments and earn as many upvotes as possible to make your wishes come true


  • Walter Kelley
    I'm trying my best to ensure I pass this exam.
    2023-01-04 00:00

    Reply


    Patricia Johnson reply to Walter Kelley
    Gooood Luck, Man!
    2023-01-22 00:00:00.0

    Reply


  • Scott Phillips
    Fingers crossed for passing this exam!
    2023-04-09 00:00

    Reply


    Joshua Moore reply to Scott Phillips
    Best Wishes.
    2023-04-20 00:00:00.0

    Reply


  • Rose Rogers
    Hoping to make it through this exam successfully.
    2023-11-09 00:00

    Reply


    Tracy Shepard reply to Rose Rogers
    You can make it...
    2023-12-02 00:00:00.0

    Reply