Parity

Tags: #physics #quantum

Equation

$${\cal P}\psi(x)=\psi(-x) \\ \psi(x)= \underbrace{\frac{1}{2} (\psi(x)+\psi(-x))}_{\rm even:~\hbox{$\psi^+$}}+ \underbrace{\frac{1}{2} (\psi(x)-\psi(-x))}_{\rm odd:~\hbox{$\psi^-$}} \\ \psi^+= \frac{1}{2} (1+{\cal P})\psi(x,t) \\ \psi^-= \frac{1}{2} (1-{\cal P})\psi(x,t)$$

Latex Code

                                 {\cal P}\psi(x)=\psi(-x) \\
            \psi(x)= \underbrace{\frac{1}{2} (\psi(x)+\psi(-x))}_{\rm even:~\hbox{$\psi^+$}}+ \underbrace{\frac{1}{2} (\psi(x)-\psi(-x))}_{\rm odd:~\hbox{$\psi^-$}} \\
            \psi^+= \frac{1}{2} (1+{\cal P})\psi(x,t) \\
            \psi^-= \frac{1}{2} (1-{\cal P})\psi(x,t)
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            {\cal P}\psi(x)=\psi(-x) \\
            \psi(x)= \underbrace{\frac{1}{2} (\psi(x)+\psi(-x))}_{\rm even:~\hbox{$\psi^+$}}+ \underbrace{\frac{1}{2} (\psi(x)-\psi(-x))}_{\rm odd:~\hbox{$\psi^-$}} \\
            \psi^+= \frac{1}{2} (1+{\cal P})\psi(x,t) \\
            \psi^-= \frac{1}{2} (1-{\cal P})\psi(x,t)
        

Explanation

Latex code for the Parity Equation. If the wavefunction is split into even and odd functions, it can be expanded into eigenfunctions of P. I will briefly introduce the notations in this formulation.

  • : parity operator
  • : Even Function
  • : Odd Function

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos