Power Series with Real Variables

Tags: #math #power #series

Equation

$$e^{x}=1+x+\frac{x^{2}}{2!}+...+\frac{x^{n}}{n!}+... \\ \ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + ... + (-1)^{n+1}\frac{x^{n}}{n!} +... \\ \cos(x) = \frac{e^{ix}+e^{-ix}}{2}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+...\\ \sin(x) = \frac{e^{ix}-e^{-ix}}{2i}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+...$$

Latex Code

                                 e^{x}=1+x+\frac{x^{2}}{2!}+...+\frac{x^{n}}{n!}+... \\
\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + ... + (-1)^{n+1}\frac{x^{n}}{n!} +... \\
\cos(x) = \frac{e^{ix}+e^{-ix}}{2}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+...\\
\sin(x) = \frac{e^{ix}-e^{-ix}}{2i}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+...
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction


Explanation

  • Taylor Series Expansion of
  • Taylor Series Expansion of
  • Taylor Series Expansion of
  • Taylor Series Expansion of

Related Documents

Discussion

Comment to Make Wishes Come True

Leave your wishes (e.g. Passing Exams) in the comments and earn as many upvotes as possible to make your wishes come true


  • Gregory Edwards
    Praying that I can get through this exam.
    2024-04-20 00:00

    Reply


    Julie Wright reply to Gregory Edwards
    You can make it...
    2024-04-25 00:00:00.0

    Reply


  • Louise Kelley
    It's my mission to pass this test.
    2024-02-04 00:00

    Reply


    Noel Bowers reply to Louise Kelley
    Gooood Luck, Man!
    2024-03-05 00:00:00.0

    Reply


  • Donald White
    Anticipating a pass on this exam.
    2023-07-04 00:00

    Reply


    Jonah Bishop reply to Donald White
    Best Wishes.
    2023-07-22 00:00:00.0

    Reply