Power Series with Real Variables
Tags: #math #power #seriesEquation
$$e^{x}=1+x+\frac{x^{2}}{2!}+...+\frac{x^{n}}{n!}+... \\ \ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + ... + (-1)^{n+1}\frac{x^{n}}{n!} +... \\ \cos(x) = \frac{e^{ix}+e^{-ix}}{2}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+...\\ \sin(x) = \frac{e^{ix}-e^{-ix}}{2i}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+...$$Latex Code
e^{x}=1+x+\frac{x^{2}}{2!}+...+\frac{x^{n}}{n!}+... \\ \ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + ... + (-1)^{n+1}\frac{x^{n}}{n!} +... \\ \cos(x) = \frac{e^{ix}+e^{-ix}}{2}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+...\\ \sin(x) = \frac{e^{ix}-e^{-ix}}{2i}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+...
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Explanation
- Taylor Series Expansion of
- Taylor Series Expansion of
- Taylor Series Expansion of
- Taylor Series Expansion of
Reply