Blog
Community
Chat
Question
Equation
Paper
Search
AI Apps Search
AI Agent Search
Robot Search
Equation Search
Review
E-Commerce
Top Brands
Compare Brands
Car
Top Brands
Compare Brands
AI Store
Top Apps
Compare Apps
Workspace
AI Courses
AIGC Chart
AI Writer
Dialogue Visualization
Agent Visualization
Equation Latex
About
Register
Login
Navigation
math
statistics
-1
Equation Database
math
Bernoulli Distribution
Beta Binomial Distribution
Beta Distribution
Binomial Distribution
Chi-Squared Distribution
Exponential Distribution
Fisher Skewness
Gamma Distribution
Geometric Distribution
Gumbel Distribution
READ MORE
statistics
Bernoulli Distribution
Beta Binomial Distribution
Beta Distribution
Binomial Distribution
Chi-Squared Distribution
Exponential Distribution
Fisher Skewness
Gamma Distribution
Geometric Distribution
Gumbel Distribution
READ MORE
EQUATION LIST
math
Bernoulli Distribution
#Math
#Statistics
$$Pr(X=1) = p = 1- Pr(X=0) = 1 - q, \\ f(x)=p \text{ if } k = 1 \text{ else } q \text{ if } k = 0$$
READ MORE
Beta Binomial Distribution
#Math
#Statistics
$$x \sim f(x | n, \alpha, \beta), \\ f(x | n, \alpha, \beta) = \int_{0}^{1} \text{Bin}(x|n,p)\text{Beta}(p|\alpha,\beta) dp , \\ f(x | n, \alpha, \beta) = C^{x}_{n} \frac{B(x+\alpha, n -x + \beta)}{B(\alpha,\beta)}$$
READ MORE
Beta Distribution
#Math
#Statistics
$$X \sim Beta(\alpha,\beta), \\ f(x)=\frac{ x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \\ B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \\ F(x)=I_{x}(\alpha+\beta)$$
READ MORE
Binomial Distribution
#Math
#Statistics
$$X \sim B(n,p) \\f(x)=\begin{pmatrix}n\\ x\end{pmatrix}p^{x}q^{n-x}=C^{k}_{n}p^{x}q^{n-x},q=1-p\\\text{Binominal Mean}\ \mu=np\\\text{Binominal Variance}\ \sigma^2=npq$$
READ MORE
Chi-Squared Distribution
#Math
#Statistics
$$Q = \sum^{k}_{i=1} Z^{2}_{i} \sim \chi^{2}(k), \\ f(k) = \frac{1}{2^{k/2} \Gamma (k/2)} x^{k/2-1} e^{-x/2}, \\ F(k) = \frac{1}{\Gamma (k/2)} \gamma (\frac{k}{2},\frac{x}{2})$$
READ MORE
Exponential Distribution
#Math
#Statistics
$$f(x, \lambda)=\lambda e^{-\lambda x} \\ F(x, \lambda)=1 - e^{-\lambda x}$$
READ MORE
Fisher Skewness
#Math
#Statistics
$$\gamma_1 = \frac{{\mu_3 }}{{\mu_2 ^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} }} = \frac{{\mu_3 }}{{\sigma ^3 }}$$
READ MORE
Gamma Distribution
#Math
#Statistics
$$\Gamma \left( a \right) = \int\limits_0^\infty {s^{a - 1} } e^{ - s} ds \\ P(x) = \frac{x^{\alpha-1} e^{-frac{x}{\theta}}}{\Gamma(\alpha) \theta^{\alpha}} \\ \mu = \alpha \theta \\ \sigma^{2} = \alpha \theta^{2} \\ \gamma_{1} = \frac{2}{\sqrt{\alpha}} \\ \gamma_{2} = \frac{6}{\alpha}$$
READ MORE
Geometric Distribution
#Math
#Statistics
$$Pr(X=k) = (1-p)^{k-1}q, \\ f(x)=(1-p)^{k-1}q, \\ F(x)=1 - (1-p)^{[x]}$$
READ MORE
Gumbel Distribution
#Math
#Statistics
$$x \sim \text{Gumbel}(\mu,\beta), \\ \frac{1}{\beta} e^{-(z + e^{-z})}, z=\frac{x - \mu}{\beta}, \\ e^{-e^{-(x-\mu)/\beta}}$$
READ MORE
Laplace Distribution
#Math
#Statistics
$$x \sim \text{Laplace}(\mu,b), \\ f(x | \mu,b) =\frac{1}{2b} \exp (-\frac{|x-\mu|}{b}), \\ F(x | \mu,b) = \frac{1}{2} \exp (\frac{x - \mu}{b}) \text{ if } x \le \mu, 1 - \frac{1}{2} \exp (-\frac{x - \mu}{b}) \text{ if } x \ge \mu$$
READ MORE
Normal Gaussian Distribution
#Math
#Statistics
$$X \sim \mathcal{N}(\mu,\sigma^2) \\ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\exp{[-\frac{(x-\mu)^{2}}{2\sigma^{2}}]}$$
READ MORE
Poisson Binomial Distribution
#Math
#Statistics
$$Pr(K = k) = \sum_{A \in F_{k}} \prod_{i \in A} p_{i} \prod_{j \in A_{c}} (1-p_{j})$$
READ MORE
Poisson Distribution
#Math
#Statistics
$$X \sim \pi(\mu) \\f(x)=\frac{\mu^{x}}{x!}e^{-\mu}\\ \text{Poisson Mean} \mu \\ \text{Poisson Variance}\sigma^2=\mu$$
READ MORE
Student t-Distribution
#Math
#Statistics
$$f(t) = \frac{\Gamma(\frac{v + 1}{2})}{\sqrt{v\pi}\Gamma(v/2)} (1+\frac{t^{2}}{v})^{-(v+1)/2}, \\ F(t) = \frac{1}{2} + x \Gamma(\frac{v+1}{2}) \times \frac{2^{F_{1}}(1/2,\frac{v+1}{2};3/2;-\frac{x^{2}}{v})}{\sqrt{\pi v} \Gamma(\frac{v}{2})}, \\ F(t) = 1 - \frac{1}{2} I_{x(t)} (\frac{v}{2}, \frac{1}{2}), x(t)=\frac{v}{t^{2} + v}$$
READ MORE
Uniform Distribution
#Math
#Statistics
$$X \sim U(a,b) \\ f(x)=\frac{1}{b-a} \text{for} a \le x \le b \text{else} 0 \\ F(x)=\frac{x-a}{b-a} \text{for} a \le x \le b, 1 \text{for} x > b, 0 \text{for} x < a$$
READ MORE
statistics
Bernoulli Distribution
#Math
#Statistics
$$Pr(X=1) = p = 1- Pr(X=0) = 1 - q, \\ f(x)=p \text{ if } k = 1 \text{ else } q \text{ if } k = 0$$
READ MORE
Beta Binomial Distribution
#Math
#Statistics
$$x \sim f(x | n, \alpha, \beta), \\ f(x | n, \alpha, \beta) = \int_{0}^{1} \text{Bin}(x|n,p)\text{Beta}(p|\alpha,\beta) dp , \\ f(x | n, \alpha, \beta) = C^{x}_{n} \frac{B(x+\alpha, n -x + \beta)}{B(\alpha,\beta)}$$
READ MORE
Beta Distribution
#Math
#Statistics
$$X \sim Beta(\alpha,\beta), \\ f(x)=\frac{ x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \\ B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \\ F(x)=I_{x}(\alpha+\beta)$$
READ MORE
Binomial Distribution
#Math
#Statistics
$$X \sim B(n,p) \\f(x)=\begin{pmatrix}n\\ x\end{pmatrix}p^{x}q^{n-x}=C^{k}_{n}p^{x}q^{n-x},q=1-p\\\text{Binominal Mean}\ \mu=np\\\text{Binominal Variance}\ \sigma^2=npq$$
READ MORE
Chi-Squared Distribution
#Math
#Statistics
$$Q = \sum^{k}_{i=1} Z^{2}_{i} \sim \chi^{2}(k), \\ f(k) = \frac{1}{2^{k/2} \Gamma (k/2)} x^{k/2-1} e^{-x/2}, \\ F(k) = \frac{1}{\Gamma (k/2)} \gamma (\frac{k}{2},\frac{x}{2})$$
READ MORE
Exponential Distribution
#Math
#Statistics
$$f(x, \lambda)=\lambda e^{-\lambda x} \\ F(x, \lambda)=1 - e^{-\lambda x}$$
READ MORE
Fisher Skewness
#Math
#Statistics
$$\gamma_1 = \frac{{\mu_3 }}{{\mu_2 ^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} }} = \frac{{\mu_3 }}{{\sigma ^3 }}$$
READ MORE
Gamma Distribution
#Math
#Statistics
$$\Gamma \left( a \right) = \int\limits_0^\infty {s^{a - 1} } e^{ - s} ds \\ P(x) = \frac{x^{\alpha-1} e^{-frac{x}{\theta}}}{\Gamma(\alpha) \theta^{\alpha}} \\ \mu = \alpha \theta \\ \sigma^{2} = \alpha \theta^{2} \\ \gamma_{1} = \frac{2}{\sqrt{\alpha}} \\ \gamma_{2} = \frac{6}{\alpha}$$
READ MORE
Geometric Distribution
#Math
#Statistics
$$Pr(X=k) = (1-p)^{k-1}q, \\ f(x)=(1-p)^{k-1}q, \\ F(x)=1 - (1-p)^{[x]}$$
READ MORE
Gumbel Distribution
#Math
#Statistics
$$x \sim \text{Gumbel}(\mu,\beta), \\ \frac{1}{\beta} e^{-(z + e^{-z})}, z=\frac{x - \mu}{\beta}, \\ e^{-e^{-(x-\mu)/\beta}}$$
READ MORE
Laplace Distribution
#Math
#Statistics
$$x \sim \text{Laplace}(\mu,b), \\ f(x | \mu,b) =\frac{1}{2b} \exp (-\frac{|x-\mu|}{b}), \\ F(x | \mu,b) = \frac{1}{2} \exp (\frac{x - \mu}{b}) \text{ if } x \le \mu, 1 - \frac{1}{2} \exp (-\frac{x - \mu}{b}) \text{ if } x \ge \mu$$
READ MORE
Normal Gaussian Distribution
#Math
#Statistics
$$X \sim \mathcal{N}(\mu,\sigma^2) \\ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\exp{[-\frac{(x-\mu)^{2}}{2\sigma^{2}}]}$$
READ MORE
Poisson Binomial Distribution
#Math
#Statistics
$$Pr(K = k) = \sum_{A \in F_{k}} \prod_{i \in A} p_{i} \prod_{j \in A_{c}} (1-p_{j})$$
READ MORE
Poisson Distribution
#Math
#Statistics
$$X \sim \pi(\mu) \\f(x)=\frac{\mu^{x}}{x!}e^{-\mu}\\ \text{Poisson Mean} \mu \\ \text{Poisson Variance}\sigma^2=\mu$$
READ MORE
Student t-Distribution
#Math
#Statistics
$$f(t) = \frac{\Gamma(\frac{v + 1}{2})}{\sqrt{v\pi}\Gamma(v/2)} (1+\frac{t^{2}}{v})^{-(v+1)/2}, \\ F(t) = \frac{1}{2} + x \Gamma(\frac{v+1}{2}) \times \frac{2^{F_{1}}(1/2,\frac{v+1}{2};3/2;-\frac{x^{2}}{v})}{\sqrt{\pi v} \Gamma(\frac{v}{2})}, \\ F(t) = 1 - \frac{1}{2} I_{x(t)} (\frac{v}{2}, \frac{1}{2}), x(t)=\frac{v}{t^{2} + v}$$
READ MORE
Uniform Distribution
#Math
#Statistics
$$X \sim U(a,b) \\ f(x)=\frac{1}{b-a} \text{for} a \le x \le b \text{else} 0 \\ F(x)=\frac{x-a}{b-a} \text{for} a \le x \le b, 1 \text{for} x > b, 0 \text{for} x < a$$
READ MORE
AI Assistant
Close
Chatbot
close
Bot
Hi ,
How can I help you today?
Send