Blog
Community
Chat
Question
Equation
Paper
Search
AI Apps Search
AI Agent Search
Robot Search
Equation Search
Review
E-Commerce
Top Brands
Compare Brands
Car
Top Brands
Compare Brands
AI Store
Top Apps
Compare Apps
Workspace
AI Courses
AIGC Chart
AI Writer
Dialogue Visualization
Agent Visualization
Equation Latex
About
Register
Login
Navigation
math
statistics
-1
Equation Database
math
Arithmetic and Geometric Progressions
Bessel Equation
Binomial Expansion
Convergence of Series
Determinants of a Matrix
Diffusion Conduction Equation
Eigenvalues and Eigenvectors
Fourier Series
Fourier Transforms
Heat Equation
READ MORE
statistics
Bernoulli Distribution
Beta Binomial Distribution
Beta Distribution
Binomial Distribution
Chi-Squared Distribution
Exponential Distribution
Fisher Skewness
Gamma Distribution
Geometric Distribution
Gumbel Distribution
READ MORE
EQUATION LIST
math
Arithmetic and Geometric Progressions
#math
#arithmetic
#geometric
#progressions
$$S_{n}=a+(a+d)+(a+2d)+...+[a+(n-1)d]=\frac{n}{2}[2a+(n-1)d] \\ S_{n}=a+ar+ar^{2}+...+ar^{n-1}=a\frac{1-r^{n}}{1-r}$$
READ MORE
Bessel Equation
#math
#bessel equation
$$x^{2}\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}+x\frac{\mathrm{d} y}{\mathrm{d} x}+(x^{2}-m^{2})y=0 \\ J_{m}(x)=\sum^{\infty}_{k=0}\frac{(-1)^{k} (x/2)^{m+2k}}{k!(m+k)!}$$
READ MORE
Binomial Expansion
#math
#binomial
#expansion
$$(1+x)^{n}=1+nx+\frac{n(n-1)}{2!}x^{2}+...+ C^{r}_{n}x^{r} +...+x^{n} \\ C^{r}_{n}=\frac{n!}{r!(n-r)!}$$
READ MORE
Convergence of Series
#math
#convergence
#series
$$S_{n}=u_{1}+u_{2}+...+u_{n} \\ \text{Converge AS } n \rightarrow \infty \text{, If} \lim_{n \rightarrow \infty} |\frac{u_{n+1}}{u_{n}}| < 1$$
READ MORE
Determinants of a Matrix
#math
#determinants
$$|A|=\sum_{i,j,k,...}\epsilon_{ijk}A_{1i}A_{2j}A_{3k}...$$
READ MORE
Diffusion Conduction Equation
#math
#diffusion
#conduction
$$\kappa u_{xx} = u_{t} \\ \frac{\partial \Psi}{\partial t}=\kappa \triangledown^{2} \Psi$$
READ MORE
Eigenvalues and Eigenvectors
#math
#eigenvalues
#eigenvectors
$$A\mathbf{u}=\lambda\mathbf{u} \\ P_{n}(\lambda)=|A-\lambda I|$$
READ MORE
Fourier Series
#math
#fourier series
$$y(x)=c_{0}+\sum^{M}_{m=1}c_{m}\cos mx+\sum^{M^{'}}_{m=1}s_{m}\sin mx \\ c_{0}=\frac{1}{2\pi}\int^{\pi}_{-\pi}y(x) \mathrm{d} x \\ c_{m}=\frac{1}{\pi}\int^{\pi}_{-\pi}y(x) \cos mx \mathrm{d} x \\ s_{m}=\frac{1}{\pi}\int^{\pi}_{-\pi}y(x) \sin mx \mathrm{d} x$$
READ MORE
Fourier Transforms
#math
#fourier transforms
$$y(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \hat{y}(\omega) e^{i\omega t} \mathrm{d} \omega \\ \hat{y}(\omega)=\int_{-\infty}^{\infty} y(t) e^{-i\omega t} \mathrm{d} t$$
READ MORE
Heat Equation
#math
#heat equation
$$u_{t}={\alpha}^{2}u_{xx}$$
READ MORE
Laplace Equation
#math
#laplace equation
$$u_{xx} = 0$$
READ MORE
Laplace Transform
#math
#laplace transform
$$\bar{y}(s)=\mathcal{L}(y(t))=\int^{\infty}_{0} e^{-st} y(t) \mathrm{d}t$$
READ MORE
Legendre Equation
#math
#legendre equation
$$(1-x^{2})\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}-2x\frac{\mathrm{d} y}{\mathrm{d} x}+l(l+1)y=0 \\ P_{l}(x)=\frac{1}{2^{l}l!}(\frac{\mathrm{d}}{\mathrm{d} x})^{l}(x^2-1)^{l}\\ P_{l}(x)=\frac{1}{l}[(2l-1)xP_{l-1}(x)-(l-1)P_{l-2}(x)]$$
READ MORE
Maclaurin Series
#math
#maclaurin series
$$y(x)=y(a+u)=y(0)+x\frac{\mathrm{d} y}{\mathrm{d} x}+\frac{1}{2!}x^{2}\frac{\mathrm{d}^2 y}{\mathrm{d} x^{2}}+\frac{1}{3!}x^{3}\frac{\mathrm{d}^3 y}{\mathrm{d} x^{3}}+...$$
READ MORE
Plane Wave Expansion
#math
#plane wave expansion
$$\exp(ikz)=\exp(ikr\cos \theta=\sum^{\infty}_{l=0}(2l+1)i^{l}j_{l}(kr)P_{l}(\cos \theta)$$
READ MORE
Power Series with Real Variables
#math
#power
#series
$$e^{x}=1+x+\frac{x^{2}}{2!}+...+\frac{x^{n}}{n!}+... \\ \ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + ... + (-1)^{n+1}\frac{x^{n}}{n!} +... \\ \cos(x) = \frac{e^{ix}+e^{-ix}}{2}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+...\\ \sin(x) = \frac{e^{ix}-e^{-ix}}{2i}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+...$$
READ MORE
Regression Least Squares Fitting
#math
#regression
$$y_{i}=\alpha + \beta (x_{i} - \bar{x}) + \epsilon_{i} \\ \hat{\alpha}=\bar{y} \\ \hat{\beta}=\frac{s^{2}_{xy}}{s^{2}_{x}}$$
READ MORE
Spherical Harmonics Equation
#math
#spherical harmonics
$$[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}(\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}) ] Y^{m}_{l} + l(l+1) Y^{m}_{l}=0 \\ Y^{m}_{l}(\theta,\phi)=\sqrt{\frac{2l+1}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}}P^{m}_{l}(\cos \theta) e^{im \phi} \times \begin{cases}(-1)^{m} & m\ge 0 \\ 1 & m <0 \end{cases}$$
READ MORE
Taylor Series
#math
#taylor series
$$y(x)=y(a+u)=y(a)+u\frac{\mathrm{d} y}{\mathrm{d} x}+\frac{1}{2!}u^{2}\frac{\mathrm{d}^2 y}{\mathrm{d} x^{2}}+\frac{1}{3!}u^{3}\frac{\mathrm{d}^3 y}{\mathrm{d} x^{3}}+...$$
READ MORE
Wave Equation
#math
#wave equation
$$u_{tt}=c^{2}u_{xx}$$
READ MORE
Area of a Circle
#Math
#Geometry
$$A = \pi r^2$$
READ MORE
Area of a Ellipse
#Math
#Geometry
$$A = \pi r_1 r_2$$
READ MORE
Area of a Parallelogram
#Math
#Geometry
$$A = bh$$
READ MORE
Area of a Rectangle
#Math
#Geometry
$$A = lw$$
READ MORE
Area of a Regular Polygon
#Math
#Geometry
$$A = \frac{{nsr}}{2} = \frac{{pr}}{2}$$
READ MORE
Area of a Rhombus
#Math
#Geometry
$$A = \frac{{x_1 x_2 }}{2}$$
READ MORE
Area of a Sector
#Math
#Geometry
$$A = \frac{{\theta r^2 }}{2}$$
READ MORE
Area of a Square
#Math
#Geometry
$$A = x^2$$
READ MORE
Area of a Trapezoid
#Math
#Geometry
$$A = \frac{1}{2}(x_1 + x_2 )h$$
READ MORE
Area of a Triangle
#Math
#Geometry
$$A = \frac{1}{2}(x_1 + x_2 )h$$
READ MORE
Binomial Distribution
#Math
#Statistics
$$X \sim B(n,p) \\f(x)=\begin{pmatrix}n\\ x\end{pmatrix}p^{x}q^{n-x}=C^{k}_{n}p^{x}q^{n-x},q=1-p\\\text{Binominal Mean}\ \mu=np\\\text{Binominal Variance}\ \sigma^2=npq$$
READ MORE
Complex Numbers
#math
#complex numbers
$$z=x+iy=r(\cos \theta + i \sin \theta)=re^{i(\theta+2n\pi)} \\ z^{*}=x-iy=r(\cos \theta - i \sin \theta)=re^{-i\theta} \\ zz^{*}=|z|^{2}=x^{2}+y^{2}$$
READ MORE
De Moivre's Theorem
#math
#complex number
#De Moivre
$$(\cos \theta + i \sin \theta)^{n}=e^{in\theta}=\cos n\theta + i \sin n\theta$$
READ MORE
Exponential Distribution
#Math
#Statistics
$$f(x, \lambda)=\lambda e^{-\lambda x} \\ F(x, \lambda)=1 - e^{-\lambda x}$$
READ MORE
Fisher Skewness
#Math
#Statistics
$$\gamma_1 = \frac{{\mu_3 }}{{\mu_2 ^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} }} = \frac{{\mu_3 }}{{\sigma ^3 }}$$
READ MORE
Gamma Distribution
#Math
#Statistics
$$\Gamma \left( a \right) = \int\limits_0^\infty {s^{a - 1} } e^{ - s} ds \\ P(x) = \frac{x^{\alpha-1} e^{-frac{x}{\theta}}}{\Gamma(\alpha) \theta^{\alpha}} \\ \mu = \alpha \theta \\ \sigma^{2} = \alpha \theta^{2} \\ \gamma_{1} = \frac{2}{\sqrt{\alpha}} \\ \gamma_{2} = \frac{6}{\alpha}$$
READ MORE
Normal Gaussian Distribution
#Math
#Statistics
$$X \sim \mathcal{N}(\mu,\sigma^2) \\ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\exp{[-\frac{(x-\mu)^{2}}{2\sigma^{2}}]}$$
READ MORE
Poisson Distribution
#Math
#Statistics
$$X \sim \pi(\mu) \\f(x)=\frac{\mu^{x}}{x!}e^{-\mu}\\ \text{Poisson Mean} \mu \\ \text{Poisson Variance}\sigma^2=\mu$$
READ MORE
Power Series for Complex Variables
#math
#complex variables
$$e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+...+\frac{z^{n}}{n!}+...\\ \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-...\\ \cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-...\\ \ln (1+z)=1-\frac{z^{2}}{2!}+\frac{z^{3}}{3!}-...\\ (1+z)^{n}=1+nz+\frac{n(n-1)}{2!}z^{2}+\frac{n(n-1)(n-2)}{3!}z^{3}+...$$
READ MORE
gaussian process
#math
#gaussian process
$$\log p(y|X) \propto -[y^{T}(K + \sigma^{2}I)^{-1}y+\log|K + \sigma^{2}I|] \\ f(X)=\[f(x_{1}),f(x_{2}),...,f(x_{N}))\]^{T} \sim \mathcal{N}(\mu, K_{X,X}) \\ f_{*}|X_{*},X,y \sim \mathcal{N}(\mathbb{E}(f_{*}),\text{cov}(f_{*})) \\ \text{cov}(f_{*})=K_{X_{*},X_{*}}-K_{X_{*},X}[K_{X,X}+\sigma^{2}I]^{-1}K_{X,X_{*}}$$
READ MORE
Area of a Equilateral Triangle
#Math
#Geometry
$$A = \frac{{h^2 \sqrt 3 }}{3}$$
READ MORE
Cartesian to Cylindrical Coordinates
#Math
#Geometry
$$\begin{array}{*{20}c} {x = r\cos \theta } & {r = \sqrt {x^2 + y^2 } } & {} \\ {y = r\sin \theta } & {\theta = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\ {z = z} & {z = z} & {} \\ \end{array}$$
READ MORE
Cartesian to Polar Coordinates
#Math
#Geometry
$$\begin{array}{*{20}c} {x = r\cos \theta } & {r = \sqrt {x^2 + y^2 } } \\ {y = r\sin \theta } & {\theta = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} \\ \end{array}$$
READ MORE
Cartesian to Spherical Coordinates
#Math
#Geometry
$$\begin{array}{*{20}c} {x = R\sin \theta \cos \phi } & {R = \sqrt {x^2 + y^2 + z^2 } } & {} \\ {y = R\sin \theta \sin \phi } & {\phi = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\ {z = R\cos \theta } & {\theta = \cos ^{ - 1} \left( {\frac{z}{{\sqrt {x^2 + y^2 + z^2 } }}} \right)} & {} \\ \end{array}$$
READ MORE
Circle
#Math
#Geometry
$$\left( {x - x_0 } \right)^2 + \left( {y - y_0 } \right)^2 = R^2$$
READ MORE
Cylindrical to Spherical Coordinates
#Math
#Geometry
$$\begin{array}{*{20}c} {r = R\sin \theta } & {R = \sqrt {r^2 + z^2 } } & {} \\ {z = R\sin \theta } & {\phi = \theta } & {} \\ {\theta = \phi } & {\theta = \tan ^{ - 1} \left( {\frac{r}{z}} \right)} & {} \\ \end{array}$$
READ MORE
Distance Between Two Points 2D
#Math
#Geometry
$$d = \sqrt {\left( {x_1 - x_2 } \right)^2 + \left( {y_1 - y_2 } \right)^2 }$$
READ MORE
Distance Between Two Points 3D
#Math
#Geometry
$$d = \sqrt {\left( {x_1 - x_2 } \right)^2 + \left( {y_1 - y_2 } \right)^2 + \left( {z_1 - z_2 } \right)^2 }$$
READ MORE
Eccentricity of a Hyperbola
#Math
#Geometry
$$\varepsilon = \frac{{\sqrt {a^2 + b^2 } }}{a}$$
READ MORE
Eccentricity of an Ellipse
#Math
#Geometry
$$\varepsilon = \frac{{\sqrt {a^2 - b^2 } }}{a}$$
READ MORE
Ellipse
#Math
#Geometry
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = 1 $$
READ MORE
Hyperbola
#Math
#Geometry
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} - \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = 1 $$
READ MORE
Hyperbolic Paraboloid
#Math
#Geometry
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} - \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)}}{c} $$
READ MORE
Parabola
#Math
#Geometry
$$\left( {y - y_0 } \right)^2 = 4a\left( {x - x_0 } \right)$$
READ MORE
Plane
#Math
#Geometry
$$Ax + By + Cz + D = 0$$
READ MORE
Sphere
#Math
#Geometry
$$\left( {x - x_0 } \right)^2 + \left( {y - y_0 } \right)^2 + \left( {z - z_0 } \right)^2 = R^2 $$
READ MORE
Surface area of a Cuboid
#Math
#Geometry
$$S = 2lw + 2lh + 2wh$$
READ MORE
Surface area of a Sphere
#Math
#Geometry
$$S = 4\pi r^2$$
READ MORE
Surface area of a cube
#Math
#Geometry
$$S = 6x^2$$
READ MORE
Surface area of a cylinder
#Math
#Geometry
$$S = 2\pi r^2 + 2\pi rh$$
READ MORE
Bernoulli Distribution
#Math
#Statistics
$$Pr(X=1) = p = 1- Pr(X=0) = 1 - q, \\ f(x)=p \text{ if } k = 1 \text{ else } q \text{ if } k = 0$$
READ MORE
Beta Binomial Distribution
#Math
#Statistics
$$x \sim f(x | n, \alpha, \beta), \\ f(x | n, \alpha, \beta) = \int_{0}^{1} \text{Bin}(x|n,p)\text{Beta}(p|\alpha,\beta) dp , \\ f(x | n, \alpha, \beta) = C^{x}_{n} \frac{B(x+\alpha, n -x + \beta)}{B(\alpha,\beta)}$$
READ MORE
Beta Distribution
#Math
#Statistics
$$X \sim Beta(\alpha,\beta), \\ f(x)=\frac{ x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \\ B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \\ F(x)=I_{x}(\alpha+\beta)$$
READ MORE
Chi-Squared Distribution
#Math
#Statistics
$$Q = \sum^{k}_{i=1} Z^{2}_{i} \sim \chi^{2}(k), \\ f(k) = \frac{1}{2^{k/2} \Gamma (k/2)} x^{k/2-1} e^{-x/2}, \\ F(k) = \frac{1}{\Gamma (k/2)} \gamma (\frac{k}{2},\frac{x}{2})$$
READ MORE
Ellipsoid
#Math
#Geometry
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} + \frac{{\left( {z - z_0 } \right)^2 }}{{c^2 }} = 1 $$
READ MORE
Elliptic Cone
#Math
#Geometry
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)^2 }}{{c^2 }}$$
READ MORE
Elliptic Cylinder
#Math
#Geometry
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = 1 $$
READ MORE
Elliptic Paraboloid
#Math
#Geometry
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)}}{c} $$
READ MORE
Euler identity
#math
#euler
$$e^{i\pi} + 1 = 0$$
READ MORE
Gaussian Integral
#math
#calculus
$${\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}.} $$
READ MORE
Geometric Distribution
#Math
#Statistics
$$Pr(X=k) = (1-p)^{k-1}q, \\ f(x)=(1-p)^{k-1}q, \\ F(x)=1 - (1-p)^{[x]}$$
READ MORE
Gumbel Distribution
#Math
#Statistics
$$x \sim \text{Gumbel}(\mu,\beta), \\ \frac{1}{\beta} e^{-(z + e^{-z})}, z=\frac{x - \mu}{\beta}, \\ e^{-e^{-(x-\mu)/\beta}}$$
READ MORE
Laplace Distribution
#Math
#Statistics
$$x \sim \text{Laplace}(\mu,b), \\ f(x | \mu,b) =\frac{1}{2b} \exp (-\frac{|x-\mu|}{b}), \\ F(x | \mu,b) = \frac{1}{2} \exp (\frac{x - \mu}{b}) \text{ if } x \le \mu, 1 - \frac{1}{2} \exp (-\frac{x - \mu}{b}) \text{ if } x \ge \mu$$
READ MORE
Poisson Binomial Distribution
#Math
#Statistics
$$Pr(K = k) = \sum_{A \in F_{k}} \prod_{i \in A} p_{i} \prod_{j \in A_{c}} (1-p_{j})$$
READ MORE
Pythagorean Theorem
#math
#geometry
$$a^{2}+b^{2}=c^{2}$$
READ MORE
Riemann Hypothesis
#math
$$\zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1^{s}}}+{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}+\cdots $$ $$ \zeta (s)=\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}={\frac {1}{1-2^{-s}}}\cdot {\frac {1}{1-3^{-s}}}\cdot {\frac {1}{1-5^{-s}}}\cdot {\frac {1}{1-7^{-s}}}\cdots$$
READ MORE
Spiral of Archimedes
#Math
#Geometry
$$r = a \theta$$
READ MORE
Student t-Distribution
#Math
#Statistics
$$f(t) = \frac{\Gamma(\frac{v + 1}{2})}{\sqrt{v\pi}\Gamma(v/2)} (1+\frac{t^{2}}{v})^{-(v+1)/2}, \\ F(t) = \frac{1}{2} + x \Gamma(\frac{v+1}{2}) \times \frac{2^{F_{1}}(1/2,\frac{v+1}{2};3/2;-\frac{x^{2}}{v})}{\sqrt{\pi v} \Gamma(\frac{v}{2})}, \\ F(t) = 1 - \frac{1}{2} I_{x(t)} (\frac{v}{2}, \frac{1}{2}), x(t)=\frac{v}{t^{2} + v}$$
READ MORE
Uniform Distribution
#Math
#Statistics
$$X \sim U(a,b) \\ f(x)=\frac{1}{b-a} \text{for} a \le x \le b \text{else} 0 \\ F(x)=\frac{x-a}{b-a} \text{for} a \le x \le b, 1 \text{for} x > b, 0 \text{for} x < a$$
READ MORE
statistics
Bernoulli Distribution
#Math
#Statistics
$$Pr(X=1) = p = 1- Pr(X=0) = 1 - q, \\ f(x)=p \text{ if } k = 1 \text{ else } q \text{ if } k = 0$$
READ MORE
Beta Binomial Distribution
#Math
#Statistics
$$x \sim f(x | n, \alpha, \beta), \\ f(x | n, \alpha, \beta) = \int_{0}^{1} \text{Bin}(x|n,p)\text{Beta}(p|\alpha,\beta) dp , \\ f(x | n, \alpha, \beta) = C^{x}_{n} \frac{B(x+\alpha, n -x + \beta)}{B(\alpha,\beta)}$$
READ MORE
Beta Distribution
#Math
#Statistics
$$X \sim Beta(\alpha,\beta), \\ f(x)=\frac{ x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \\ B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \\ F(x)=I_{x}(\alpha+\beta)$$
READ MORE
Binomial Distribution
#Math
#Statistics
$$X \sim B(n,p) \\f(x)=\begin{pmatrix}n\\ x\end{pmatrix}p^{x}q^{n-x}=C^{k}_{n}p^{x}q^{n-x},q=1-p\\\text{Binominal Mean}\ \mu=np\\\text{Binominal Variance}\ \sigma^2=npq$$
READ MORE
Chi-Squared Distribution
#Math
#Statistics
$$Q = \sum^{k}_{i=1} Z^{2}_{i} \sim \chi^{2}(k), \\ f(k) = \frac{1}{2^{k/2} \Gamma (k/2)} x^{k/2-1} e^{-x/2}, \\ F(k) = \frac{1}{\Gamma (k/2)} \gamma (\frac{k}{2},\frac{x}{2})$$
READ MORE
Exponential Distribution
#Math
#Statistics
$$f(x, \lambda)=\lambda e^{-\lambda x} \\ F(x, \lambda)=1 - e^{-\lambda x}$$
READ MORE
Fisher Skewness
#Math
#Statistics
$$\gamma_1 = \frac{{\mu_3 }}{{\mu_2 ^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} }} = \frac{{\mu_3 }}{{\sigma ^3 }}$$
READ MORE
Gamma Distribution
#Math
#Statistics
$$\Gamma \left( a \right) = \int\limits_0^\infty {s^{a - 1} } e^{ - s} ds \\ P(x) = \frac{x^{\alpha-1} e^{-frac{x}{\theta}}}{\Gamma(\alpha) \theta^{\alpha}} \\ \mu = \alpha \theta \\ \sigma^{2} = \alpha \theta^{2} \\ \gamma_{1} = \frac{2}{\sqrt{\alpha}} \\ \gamma_{2} = \frac{6}{\alpha}$$
READ MORE
Geometric Distribution
#Math
#Statistics
$$Pr(X=k) = (1-p)^{k-1}q, \\ f(x)=(1-p)^{k-1}q, \\ F(x)=1 - (1-p)^{[x]}$$
READ MORE
Gumbel Distribution
#Math
#Statistics
$$x \sim \text{Gumbel}(\mu,\beta), \\ \frac{1}{\beta} e^{-(z + e^{-z})}, z=\frac{x - \mu}{\beta}, \\ e^{-e^{-(x-\mu)/\beta}}$$
READ MORE
Laplace Distribution
#Math
#Statistics
$$x \sim \text{Laplace}(\mu,b), \\ f(x | \mu,b) =\frac{1}{2b} \exp (-\frac{|x-\mu|}{b}), \\ F(x | \mu,b) = \frac{1}{2} \exp (\frac{x - \mu}{b}) \text{ if } x \le \mu, 1 - \frac{1}{2} \exp (-\frac{x - \mu}{b}) \text{ if } x \ge \mu$$
READ MORE
Normal Gaussian Distribution
#Math
#Statistics
$$X \sim \mathcal{N}(\mu,\sigma^2) \\ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\exp{[-\frac{(x-\mu)^{2}}{2\sigma^{2}}]}$$
READ MORE
Poisson Binomial Distribution
#Math
#Statistics
$$Pr(K = k) = \sum_{A \in F_{k}} \prod_{i \in A} p_{i} \prod_{j \in A_{c}} (1-p_{j})$$
READ MORE
Poisson Distribution
#Math
#Statistics
$$X \sim \pi(\mu) \\f(x)=\frac{\mu^{x}}{x!}e^{-\mu}\\ \text{Poisson Mean} \mu \\ \text{Poisson Variance}\sigma^2=\mu$$
READ MORE
Student t-Distribution
#Math
#Statistics
$$f(t) = \frac{\Gamma(\frac{v + 1}{2})}{\sqrt{v\pi}\Gamma(v/2)} (1+\frac{t^{2}}{v})^{-(v+1)/2}, \\ F(t) = \frac{1}{2} + x \Gamma(\frac{v+1}{2}) \times \frac{2^{F_{1}}(1/2,\frac{v+1}{2};3/2;-\frac{x^{2}}{v})}{\sqrt{\pi v} \Gamma(\frac{v}{2})}, \\ F(t) = 1 - \frac{1}{2} I_{x(t)} (\frac{v}{2}, \frac{1}{2}), x(t)=\frac{v}{t^{2} + v}$$
READ MORE
Uniform Distribution
#Math
#Statistics
$$X \sim U(a,b) \\ f(x)=\frac{1}{b-a} \text{for} a \le x \le b \text{else} 0 \\ F(x)=\frac{x-a}{b-a} \text{for} a \le x \le b, 1 \text{for} x > b, 0 \text{for} x < a$$
READ MORE
AI Assistant
Close
Chatbot
close
Bot
Hi ,
How can I help you today?
Send