Blog
Community
Chat
Question
Equation
Search
AI Apps Search
AI Agent Search
Robot Search
Equation Search
Review
E-Commerce
Top Brands
Compare Brands
Car
Top Brands
Compare Brands
AI Store
Top Apps
Compare Apps
Workspace
AI Courses
AIGC Chart
AI Writer
Dialogue Visualization
Agent Visualization
Equation Latex
About
Register
Login
-1
Equation Database
physics
Amplitude of a driven oscillation
Angular frequency for a damped oscillation
Coupled Conductors and Transformers
Cylindrical Waves
Einstein Field Equations
Electric Oscillations
General Relativity
Harmonic Oscillations
Lorentz Transformation Latex
Maxwell Equations Differential
READ MORE
math
Fourier Series
Fourier Transforms
READ MORE
machine learning
Bellman Equation
Jensen-Shannon Divergence JS-Divergence
KL-Divergence
Kullback-Leibler Divergence
Support Vector Machine SVM
READ MORE
EQUATION LIST
physics
Amplitude of a driven oscillation
#physics
#amplitude
#oscillation
$$A = \frac{{F_0 }}{{\sqrt {m^2 \left( {\omega _0^2 - \omega ^2 } \right)^2 + b^2 \omega ^2 } }}$$
READ MORE
Angular frequency for a damped oscillation
#physics
#angular
#damped oscillation
#oscillation
$$\omega ' = \omega _0 \sqrt {1 - \left( {\frac{b}{{2m\omega _0 }}} \right)^2 } = \omega _0 \sqrt {1 - \frac{1}{{4Q^2 }}}$$
READ MORE
Coupled Conductors and Transformers
#physics
#coupled
#conductors
#transformers
$$M_{12}=M_{21}:=M=k\sqrt{L_1L_2}=\frac{N_1\Phi_1}{I_2}=\frac{N_2\Phi_2}{I_1}\sim N_1N_2 \\ \frac{V_1}{V_2}=\frac{I_2}{I_1}=-\frac{i\omega M}{i\omega L_2+R_{\rm load}}\approx-\sqrt{\frac{L_1}{L_2}}=-\frac{N_1}{N_2} \\ \Phi_{12}=M_{12}I_2 \\ \Phi_{21}=M_{21}I_1$$
READ MORE
Cylindrical Waves
#physics
#cylindrical waves
$$\frac{1}{v^2}\frac{\partial^2 u}{\partial t^2}-\frac{1}{r}\frac{\partial }{\partial r}\left(r\frac{\partial u}{\partial r}\right)=0 \\ u(r,t)=\frac{\hat{u}}{\sqrt{r}}\cos(k(r\pm vt))$$
READ MORE
Einstein Field Equations
#physics
$$G^{\alpha\beta}:=R^{\alpha\beta}-\frac{1}{2}g^{\alpha\beta}R \\ G_{\alpha\beta}=\frac{8\pi \kappa}{c^{2}}T_{\alpha\beta}$$
READ MORE
Electric Oscillations
#physics
#oscillations
$$\text{Impedance} \\ Z=R+ix \\ \text{Series connection} \\ V=IZ, Z_{\rm tot}=\sum_i Z_i~,~~L_{\rm tot}=\sum_i L_i~,~~ \frac{1}{C_{\rm tot}}=\sum_i\frac{1}{C_i}~,~~Q=\frac{Z_0}{R}~,~~ Z=R(1+iQ\delta) \\ \text{Parallel connection} \\ \frac{1}{Z_{\rm tot}}=\sum_i\frac{1}{Z_i}~,~~ \frac{1}{L_{\rm tot}}=\sum_i\frac{1}{L_i}~,~~ C_{\rm tot}=\sum_i C_i~,~~Q=\frac{R}{Z_0}~,~~ Z=\frac{R}{1+iQ\delta}$$
READ MORE
General Relativity
#physics
#relativity
$$\frac{\mathrm{d}^{2} x^{\alpha}}{\mathrm{d} s^{2}}+\Gamma^{\alpha}_{\beta\gamma}\frac{\mathrm{d} x^{\beta}}{\mathrm{d} s}\frac{\mathrm{d} x^{\gamma}}{\mathrm{d} s}=0$$
READ MORE
Harmonic Oscillations
#physics
#harmonic
#oscillations
$$\Psi(t)=\hat{\Psi}(t)e^{i(\omega t \pm \phi)}=\hat{\Psi}(t)\cos (\omega t \pm \phi) \\ \sum_{i} \hat{\Psi_{i}}\cos(\alpha_{i} \pm \omega t) =\hat{\Phi}\cos (\beta \pm \omega t) \\ \tan (\beta)=\frac{\sum_{i} \hat{\Psi_{i}} \sin (\alpha_{i})}{\sum_{i} \hat{\Psi_{i}} \cos (\alpha_{i})} \\ \hat{\Phi}^{2} = \sum_{i} \hat{\Psi_{i}^{2}} + 2 \sum_{j > i} \sum_{i} \hat{\Psi_{i}} \hat{\Psi_{j}} \cos (\alpha_{i} - \alpha_{j}) \\ \int x(t) dt=\frac{x(t)}{i \omega} \\ \frac{d^{n}(x(t))}{d t^{n}}=(i \omega)^{n} x(t)$$
READ MORE
Lorentz Transformation Latex
#physics
#relativity
#lorentz
#transformation
$$(\vec{x}^{'}, t^{'}) = (\vec{x}^{'}(\vec{x},t), t^{'}(\vec{x},t)) \\ \vec{x}^{'} = \vec{x} +\frac{(\gamma-1)(\vec{x}\vec{v}) \vec{v}}{|v|^{2}} - \gamma \vec{v}t \\ t^{'} = \frac{\gamma(t-\vec{x}\vec{v})}{c^{2}} \\ \gamma = \frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\ \frac{\partial^{2}}{\partial{x^{2}}} + \frac{\partial^{2}}{\partial{y^{2}}} + \frac{\partial^{2}}{\partial{z^{2}}} - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial{t^{2}}} = \frac{\partial^{2}}{\partial{{x^{'}}^{2}}} + \frac{\partial^{2}}{\partial{{y^{'}}^{2}}} + \frac{\partial^{2}}{\partial{{z^{'}}^{2}}} - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial{{t^{'}}^{2}}}$$
READ MORE
Maxwell Equations Differential
#physics
#maxwell
#electricity
#magnetism
$$\nabla \cdot \vec{D}=\rho_{free} \\ \nabla \cdot \vec{B}=0 \\ \nabla \times \vec{E}=-\frac{\partial{\vec{B}}}{\partial{t}} \\ \nabla \times \vec{H}=\vec{J}_{free}+\frac{\partial{\vec{D}}}{\partial{t}}$$
READ MORE
Maxwell Equations Integral
#physics
#maxwell
#electricity
#magnetism
$$\oiint (\vec{D}\cdot \vec{n}) \mathrm{d}^{2}A=Q_{\text{free,included}}\\ \oiint (\vec{B}\cdot \vec{n}) \mathrm{d}^{2}A=0 \\ \oint \vec{E} \mathrm{d}\vec{s}=-\frac{\mathrm{d}\Phi}{\mathrm{d}t}\\ \oint \vec{H} \mathrm{d}\vec{s}=I_{\text{free,included}}+\frac{\mathrm{d}\Psi }{\mathrm{d}t}$$
READ MORE
Mechanic Oscillations
#physics
#mechanic
#oscillations
$$m\ddot{x}=F(t)-k\dot{x}-Cx \\ F(t)=\hat{F}\cos(\omega t) \\ -m\omega^2 x=F-Cx-ik\omega x \\ \omega_0^2=C/m \\ x=\frac{F}{m(\omega_0^2-\omega^2)+ik\omega} \\ \dot{x}=\frac{F}{i\sqrt{Cm}\delta+k} \\ \delta=\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega} \\ Z=F/\dot{x} \\ Q=\frac{\sqrt{Cm}}{k}$$
READ MORE
Pendulums
#physics
#pendulums
$$T=1/f \\ T=2\pi\sqrt{m/C} \\ T=2\pi\sqrt{I/\tau} \\ T=2\pi\sqrt{I/\kappa} \\ T=2\pi\sqrt{l/g}$$
READ MORE
Plane Waves
#physics
#plane waves
$$u(\vec{x},t)=2^n\hat{u}\cos(\omega t)\sum_{i=1}^n\sin(k_ix_i) \\ u(\vec{x},t)=\hat{u}\cos(\vec{k}\cdot\vec{x}\pm\omega t+\varphi) \\ \frac{f}{f_0}=\frac{v_{\rm f}-v_{\rm obs}}{v_{\rm f}}$$
READ MORE
Red and Blue Shift
#physics
#red and blue shift
$$\vec{e_{v}}\vec{e_{r}}=\cos(\Phi) \\ \frac{f^{'}}{f}=\gamma(1-\frac{v\cos(\Phi)}{c}) \\ \frac{\Delta f}{f}=\frac{\kappa M}{rc^{2}} \\ \frac{\lambda_{0}}{\lambda_{1}}=\frac{R_{0}}{R_{1}}$$
READ MORE
Riemannian Tensor
#physics
#riemannian rensor
$$R^{\mu}_{v \alpha \beta}T^{v}=\triangledown_{\alpha}\triangledown_{\beta}T^{\mu}-\triangledown_{\beta}\triangledown_{\alpha}T^{\mu} \\ \triangledown_{j}a^{i}=\partial_{j}a^{i}+\Gamma^{i}_{jk}a^{k} \\ \triangledown_{j}a_{i}=\partial_{j}a_{i}-\Gamma^{k}_{ij}a_{k} \\ \Gamma^{i}_{jk}=\frac{\partial^{2} \bar{x}^{l}}{\partial{x^{j}}\partial{x^{k}}}\frac{\partial{x^{i}}}{\partial{\bar{x}^{l}}}$$
READ MORE
Spherical Waves
#physics
#spherical waves
$$\frac{1}{v^2}\frac{\partial^2 (ru)}{\partial t^2}-\frac{\partial^2 (ru)}{\partial r^2}=0 \\ u(r,t)=C_1\frac{f(r-vt)}{r}+C_2\frac{g(r+vt)}{r}$$
READ MORE
Stress-energy Tensor
#physics
#stress-energy tensor
$$T_{\mu v}=(\varrho c^{2}+p)u_{p}u_{v}+pg_{\mu v}+\frac{1}{c^{2}}(F^{\mu}_{\alpha}F^{\alpha v} + \frac{1}{4}g^{\mu v}F^{\alpha\beta}F_{\alpha\beta}) \\ \triangledown_{v} T_{\mu v}=0 \\ F_{\alpha\beta}=\frac{\partial{A_{\beta}}}{\partial{x^{\alpha}}} - \frac{\partial{A_{\alpha}}}{\partial{x^{\beta}}} \\ \frac{d p_{\alpha}}{d \tau}=qF_{\alpha\beta}u^{\beta}$$
READ MORE
The general solution of Wave Equation
#physics
#general solution
#waves
$$\frac{\partial^2 u(x,t)}{\partial t^2}=\sum_{m=0}^{N}\left(b_m\frac{\partial ^m}{\partial x^m}\right)u(x,t) \\ u(x,t)=\int\limits_{-\infty}^{\infty}\left(a(k){\rm e}^{i(kx-\omega_1(k)t)}+ b(k){\rm e}^{i(kx-\omega_2(k)t)}\right)dk \\ u(x,t)=A{\rm e}^{i(kx-\omega t)} \\ \omega_j=\omega_j(k)$$
READ MORE
Wave Equation
#physics
#wave
$$\nabla^2u-\frac{1}{v^2}\frac{\partial^2 u}{\partial t^2}=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}-\frac{1}{v^2}\frac{\partial^2 u}{\partial t^2}=0 \\ v=f\lambda \\ k\lambda=2\pi \\ \omega=2\pi f \\ v_{\rm g}=\frac{d\omega}{dk}=v_{\rm ph}+k\frac{dv_{\rm ph}}{dk}= v_{\rm ph}\left(1-\frac{k}{n}\frac{dn}{dk}\right) \\ v=\sqrt{\kappa/\varrho}$$
READ MORE
Waves In Long Conductors
#physics
#waves
#oscillations
$$Z_0=\sqrt{\frac{dL}{dx}\frac{dx}{dC}} \\ v=\sqrt{\frac{dx}{dL}\frac{dx}{dC}}$$
READ MORE
Angular frequency for a damped oscillation
#Physics
#Angular frequency
$$\omega ' = \omega _0 \sqrt {1 - \left( {\frac{b}{{2m\omega _0 }}} \right)^2 } = \omega _0 \sqrt {1 - \frac{1}{{4Q^2 }}}$$
READ MORE
Bending of light Fermat's principle
#physics
#optics
#Fermat's principle
$$\delta\int\limits_1^2 dt=\delta\int\limits_1^2\frac{n(s)}{c}ds=0\Rightarrow \delta\int\limits_1^2 n(s)ds=0$$
READ MORE
Bending of light Snell's law
#physics
#optics
#Snell's law
$$n_i\sin(\theta_i)=n_t\sin(\theta_t) \\ \frac{n_2}{n_1}=\frac{\lambda_1}{\lambda_2}=\frac{v_1}{v_2} \\ n^2=1+\frac{n_{\rm e}e^2}{\varepsilon_0m}\sum_j\frac{f_j}{\omega_{0,j}^2-\omega^2-i\delta\omega} \\ v_{\rm g}=c/(1+(n_{\rm e}e^2/2\varepsilon_0m\omega^2)) $$
READ MORE
Birefringence and Dichroism
#physics
#optics
#girefringence
#dichroism
$$\text{NA}$$
READ MORE
Diffraction
#physics
#optics
#diffraction
$$\frac{I(\theta)}{I_0}=\left(\frac{\sin(u)}{u}\right)^2\cdot \left(\frac{\sin(Nv)}{\sin(v)}\right)^2 \\ u=\pi b\sin(\theta)/\lambda \\ v=\pi d\sin(\theta)/\lambda$$
READ MORE
Displacement of a driven oscillator
#physics
#displacement
$$x = A\cos \left( {\omega t + \delta } \right)$$
READ MORE
Fabry Perot Interferometer
#physics
#optics
#fabry perot
$$T+R+A=1$$
READ MORE
Fresnel Equations
#physics
#optics
#fresnel
$$r_\parallel=\frac{\tan(\theta_i-\theta_t)}{\tan(\theta_i+\theta_t)} \\ r_\perp =\frac{\sin(\theta_t-\theta_i)}{\sin(\theta_t+\theta_i)} \\ t_\parallel=\frac{2\sin(\theta_t)\cos(\theta_i)}{\sin(\theta_t+\theta_i)\cos(\theta_t-\theta_i)} \\ t_\perp =\frac{2\sin(\theta_t)\cos(\theta_i)}{\sin(\theta_t+\theta_i)}$$
READ MORE
Green functions for the initial-value problem
#physics
#green functions
$$u(x,t)=\int\limits_{-\infty}^\infty f(x')Q(x,x',t)dx'+ \int\limits_{-\infty}^\infty g(x')P(x,x',t)dx'$$
READ MORE
Mirrors
#physics
#optics
#mirrors
$$\frac{1}{f}=\frac{1}{v}+\frac{1}{b}=\frac{2}{R}+\frac{h^2}{2}\left(\frac{1}{R}-\frac{1}{v}\right)^2$$
READ MORE
Non-linear Wave Equation
#physics
#non-linear wave
$$\frac{d^2x}{dt^2}-\varepsilon\omega_0(1-\beta x^2)\frac{dx}{dt}+\omega_0^2x=0 \\ \frac{d}{dt}\left\{\frac{1}{2}\left(\frac{dx}{dt}\right)^2+\frac{1}{2} \omega_0^2x^2\right\}= \varepsilon\omega_0(1-\beta x^2)\left(\frac{dx}{dt}\right)^2 \\ \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}-\underbrace{au\frac{\partial u}{\partial x}}_{\rm non-lin}+ \underbrace{b^2\frac{\partial ^3u}{\partial x^3}}_{\rm dispersive}=0 \\ u(x-ct)=\frac{-d}{\cosh^2(e(x-ct))}$$
READ MORE
Optical System Matrix Methods
#physics
#optics
#Matrix Methods
$$\left(\begin{array}{c}n_2\alpha_2\\y_2\end{array}\right)=M \left(\begin{array}{c}n_1\alpha_1\\y_1\end{array}\right) \\ {\rm Tr}(M)=1$$
READ MORE
Optics Magnification
#physics
#optics
#magnification
$$N=-\frac{b}{v} \\ N_{\alpha}=-\frac{\alpha_{\rm syst}}{\alpha_{\rm none}}$$
READ MORE
Optics Polarization
#physics
#optics
#polarization
$$P=\frac{I_{\rm p}}{I_{\rm p}+I_{\rm u}}=\frac{I_{\rm max}-I_{\rm min}}{I_{\rm max}+I_{\rm min}} \\ I(\theta)=I(0)\cos^2(\theta)$$
READ MORE
Optics Principal Planes
#physics
#optics
#principal planes
$$h_1=n\frac{m_{11}-1}{m_{12}} \\ h_2=n\frac{m_{22}-1}{m_{12}}$$
READ MORE
Prisms and Dispersion
#physics
#optics
#prisms
#dispersion
$$\delta=\theta_i+\theta_{i'}+\alpha \\ n=\frac{\sin(\frac{1}{2}(\delta_{\rm min}+\alpha))}{\sin(\frac{1}{2}\alpha)} \\ D=\frac{d\delta}{d\lambda}=\frac{d\delta}{dn}\frac{dn}{d\lambda} \\ \frac{d\delta}{dn}=\frac{2\sin(\frac{1}{2}\alpha)}{\cos(\frac{1}{2}(\delta_{\rm min}+\alpha))}$$
READ MORE
Reflection and Transmission
#physics
#optics
#reflection
#transmission
$$r_\parallel\equiv\left(\frac{E_{0r}}{E_{0i}}\right)_\parallel \\ r_\perp\equiv\left(\frac{E_{0r}}{E_{0i}}\right)_\perp \\ t_\parallel\equiv\left(\frac{E_{0t}}{E_{0i}}\right)_\parallel \\ t_\perp\equiv\left(\frac{E_{0t}}{E_{0i}}\right)_\perp$$
READ MORE
The Stationary Phase Method Wave Equation
#physics
#stationary phase
$$\int\limits_{-\infty}^\infty a(k){\rm e}^{i(kx-\omega(k)t)}dk\approx \sum_{i=1}^{N}\sqrt{\frac{2\pi}{\frac{d^2\omega(k_i)}{dk_i^2}}} \exp\left[-i\mbox{$\frac{1}{4}$}\pi+i(k_ix-\omega(k_i)t)\right]$$
READ MORE
Thermodynamics Ideal Mixtures
#physics
#thermodynamics
#ideal mixtures
$$U_{\rm mixture}=\sum_i n_i U^0_i \\ H_{\rm mixture}=\sum_i n_i H^0_i \\ S_{\rm mixture}=n\sum_i x_i S^0_i+\Delta S_{\rm mix} \\ \Delta S_{\rm mix}=-nR\sum\limits_i x_i\ln(x_i)$$
READ MORE
Thermodynamics Statistical Basis
#physics
#thermodynamics
$$P=N!\prod_i\frac{g_i^{n_i}}{n_i!} \\ n_i=\frac{N}{Z}g_i\exp\left(-\frac{W_i}{kT}\right) \\ Z=\sum\limits_ig_i\exp(-W_i/kT) \\ Z=\frac{V(2\pi mkT)^{3/2}}{h^3} \\ \text{Entropy in Thermodynamic Equilibrium} \\ S=\frac{U}{T}+kN\ln\left(\frac{Z}{N}\right)+kN\approx\frac{U}{T}+k\ln\left(\frac{Z^N}{N!}\right) \\ \text{Ideal gas} \\ S=kN+kN\ln\left(\frac{V(2\pi mkT)^{3/2}}{Nh^3}\right)$$
READ MORE
Waveguides and resonating cavities
#physics
#waveguides
$$\begin{array}{ll} \vec{n}\cdot(\vec{D}_2-\vec{D}_1)=\sigma~~&~~\vec{n}\times(\vec{E}_2-\vec{E}_1)=0\\ \vec{n}\cdot(\vec{B}_2-\vec{B}_1)=0~~&~~\vec{n}\times(\vec{H}_2-\vec{H}_1)=\vec{K} \end{array} \\ \vec{E}(\vec{x},t)=\vec{\cal E}(x,y){e}^{i(kz-\omega t)} \\ \vec{B}(\vec{x},t)=\vec{\cal{B}}(x,y){e}^{i(kz-\omega t)}$$
READ MORE
Angular Momentum
#physics
#mechanics
$$M = I\omega$$
READ MORE
Average Acceleration
#physics
#mechanics
#Average Acceleration
$$a_{av} = \frac{{\Delta \upsilon }}{{\Delta t}}$$
READ MORE
Bulk Modulus
#physics
#mechanics
#bulk modulus
$$B = - \frac{P}{{\Delta V}/V}$$
READ MORE
Centripetal Acceleration
#physics
#mechanics
$$a=\frac{v^{2}}{r}$$
READ MORE
Displacement of a slightly damped oscillator
#physics
#oscillations
$$x = A_0 \exp \left( { - \frac{b}{{2m}}t} \right)\cos \left( {\omega 't + \delta } \right)$$
READ MORE
Energy change in a damped oscillation
#physics
#oscillations
$$\frac{{\Delta E}}{E} = - \frac{b}{m}T \\ E = E_0 \exp \left( { - \frac{b}{m}t} \right) = E_0 \exp \left( { - \frac{t}{\tau }} \right)$$
READ MORE
Energy transmitted by a harmonic wave
#physics
#oscillations
$$\Delta E = \frac{1}{2}\mu \omega ^2 A^2 \Delta x = \frac{1}{2}\mu \omega ^2 A^2 \upsilon \Delta t$$
READ MORE
Harmonic Wave Function
#physics
#wave
$$y(x,t) = A\sin \left[ {2\pi \left( {\frac{x}{\lambda } - \frac{t}{T}} \right)} \right] = A\sin \left[ {k(x - \upsilon t)} \right]$$
READ MORE
Isobaric Processes
#physics
#thermodynamics
#isobaric processes
$$\text{Isobaric Processes} \\ H_2-H_1=\int_1^2 C_pdT \\ \text{Reversible isobaric process} \\ H_2-H_1=Q_{\rm rev}$$
READ MORE
Mechanics Compressibility
#physics
#mechanics
#compressibility
$$k = \frac{1}{B} = - \frac{{\Delta V}/V}{P}$$
READ MORE
Phase Transitions
#physics
#thermodynamics
#phase transitions
$$\Delta S_m=S_m^\alpha - S_m^\beta=\frac{r_{\beta\alpha}}{T_0} \\ S_m=\left(\frac{\partial G_m}{\partial T}\right)_{p} \\ \frac{dp}{dT}=\frac{S_m^\alpha-S_m^\beta}{V_m^\alpha-V_m^\beta}= \frac{r_{\beta\alpha}}{(V_m^\alpha-V_m^\beta)T} \\ p=p_0{\rm e}^{-r_{\beta\alpha/RT}} \\ r_{\beta\alpha}=r_{\alpha\beta} \\ r_{\beta\alpha}=r_{\gamma\alpha}-r_{\gamma\beta} \\ \frac{dp}{dT}=\frac{S_m^\alpha-S_m^\beta}{V_m^\alpha-V_m^\beta}= \frac{r_{\beta\alpha}}{(V_m^\alpha-V_m^\beta)T} \\ p=p_0{\rm e}^{-r_{\beta\alpha/RT}}$$
READ MORE
Phase constant of a driven oscillation
#physics
#oscillation
$$\tan \delta = \frac{{b\omega }}{{m\left( {\omega _0^2 - \omega ^2 } \right)}}$$
READ MORE
Reversible Adiabatic Processes
#physics
#thermodynamics
$$\text{adiabatic processes} \\ W=U_1-U_2 \\ \text{reversible adiabatic processes} \\ \gamma=C_p/C_V$$
READ MORE
State functions Maxwell Relations
#physics
#thermodynamics
$$\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial p}{\partial S}\right)_{V}~,~~\left(\frac{\partial T}{\partial p}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{p}~,~~ \left(\frac{\partial p}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}~,~~\left(\frac{\partial V}{\partial T}\right)_{p}=-\left(\frac{\partial S}{\partial p}\right)_{T} \\ TdS=C_VdT+T\left(\frac{\partial p}{\partial T}\right)_{V}dV~~\mbox{and}~~TdS=C_pdT-T\left(\frac{\partial V}{\partial T}\right)_{p}dp$$
READ MORE
The Carnot Cycle
#physics
#thermodynamics
#the carnot cycle
$$\eta=1-\frac{|Q_2|}{|Q_1|}=1-\frac{T_2}{T_1}:=\eta_{\rm C} \\ \xi=\frac{|Q_2|}{W}=\frac{|Q_2|}{|Q_1|-|Q_2|}=\frac{T_2}{T_1-T_2}$$
READ MORE
Thermal Heat Capacity
#physics
#thermodynamics
#heat capacity
$$C_p-C_V=T\left(\frac{\partial p}{\partial T}\right)_{V}\cdot\left(\frac{\partial V}{\partial T}\right)_{p}=-T\left(\frac{\partial V}{\partial T}\right)_{p}^2\left(\frac{\partial p}{\partial V}\right)_{T}\geq0 \\ \displaystyle C_X=T\left(\frac{\partial S}{\partial T}\right)_{X} \\ \displaystyle C_p=\left(\frac{\partial H}{\partial T}\right)_{p} \\ \displaystyle C_V=\left(\frac{\partial U}{\partial T}\right)_{V} \\ C_{mp}-C_{mV}=R$$
READ MORE
Thermodynamic Potential
#physics
#thermodynamics
$$dG=-SdT+Vdp+\sum_i\mu_idn_i \\ \displaystyle\mu=\left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_j} \\ V=\sum_{i=1}^c n_i\left(\frac{\partial V}{\partial n_i}\right)_{n_j,p,T}:=\sum_{i=1}^c n_i V_i \\ \begin{aligned} V_m&=&\sum_i x_i V_i\\ 0&=&\sum_i x_i dV_i\end{aligned}$$
READ MORE
Thermodynamics Conservation of Energy
#physics
#thermodynamics
$$Q=\Delta U+W \\ d\hspace{-1ex}\rule[1.25ex]{2mm}{0.4pt} Q=dU+d\hspace{-1ex}\rule[1.25ex]{2mm}{0.4pt}W \\ d\hspace{-1ex}\rule[1.25ex]{2mm}{0.4pt}W=pdV \\ Q=\Delta H+W_{\rm i}+\Delta E_{\rm kin}+\Delta E_{\rm pot}$$
READ MORE
Thermodynamics Definitions
#physics
#thermodynamics
$$f(x,y,z)=0 \\ dz=\left(\frac{\partial z}{\partial x}\right)_{y}dx+\left(\frac{\partial z}{\partial y}\right)_{x}dy \\ \left(\frac{\partial x}{\partial y}\right)_{z}\cdot\left(\frac{\partial y}{\partial z}\right)_{x}\cdot\left(\frac{\partial z}{\partial x}\right)_{y}=-1 \\ \varepsilon^m F(x,y,z)=F(\varepsilon x,\varepsilon y,\varepsilon z) \\ mF(x,y,z)=x\frac{\partial F}{\partial x}+y\frac{\partial F}{\partial y}+z\frac{\partial F}{\partial z}$$
READ MORE
Thermodynamics Nernst Law
#physics
#thermodynamics
$$\lim_{T\rightarrow0}\left(\frac{\partial S}{\partial X}\right)_{T}=0$$
READ MORE
Throttle Processes
#physics
#thermodynamics
#throttle processes
$$\text{Isobaric Processes} \\ H_2-H_1=\int_1^2 C_pdT \\ \text{Reversible Isobaric Process} \\ H_2-H_1=Q_{\rm rev}$$
READ MORE
Black Body Radiation
#physics
#quantum
#Black Body Radiation
$$w(f)=\frac{8\pi hf^3}{c^3}\frac{1}{{\rm e}^{hf/kT}-1} \\ w(\lambda)=\frac{8\pi hc}{\lambda^5}\frac{1}{{\rm e}^{hc/\lambda kT}-1} \\ P=A\sigma T^4 \\ T\lambda_{\rm max}=k_{\rm W}$$
READ MORE
Harmonic Oscillator Quantum
#physics
#quantum
$$H=\frac{p^2}{2m}+\frac{1}{2} m\omega^2 x^2= \frac{1}{2} \hbar\omega+\omega A^\dagger A \\ A=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x+\frac{ip}{\sqrt{2m\omega}} \\ A^\dagger=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x-\frac{ip}{\sqrt{2m\omega}} \\ HAu_E=(E-\hbar\omega)Au_E \\ u_n=\frac{1}{\sqrt{n!}}\left(\frac{A^\dagger}{\sqrt{\hbar}}\right)^nu_0 \\ u_0=\sqrt[4]{\frac{m\omega}{\pi\hbar}}\exp\left(-\frac{m\omega x^2}{2\hbar}\right) \\ E_n=( \frac{1}{2} +n)\hbar\omega$$
READ MORE
Mechanics Continuity Equation
#physics
#mechanics
#continuity equation
$$I_{V} = \upsilon A$$
READ MORE
Mechanics Displacement
#physics
#mechanics
#displacement
$${\Delta x}=x-x_{0}=v_{0}t+\frac{1}{2}at^{2}$$
READ MORE
Mechanics Stress
#physics
#mechanics
#stress
$${\text{Stress}} = \frac{F}{A}$$
READ MORE
Newton Second Law Force
#physics
#mechanics
#newton
$$F = ma$$
READ MORE
Operators in Quantum Physics
#physics
#quantum
$$\int\psi_1^*A\psi_2d^3V=\int\psi_2(A\psi_1)^*d^3V \\ A\Psi=a\Psi \\ \Psi=\sum\limits_nc_nu_n \\ \frac{dA}{dt}=\frac{\partial A}{\partial t}+\frac{[A,H]}{i\hbar}$$
READ MORE
Parity
#physics
#quantum
$${\cal P}\psi(x)=\psi(-x) \\ \psi(x)= \underbrace{\frac{1}{2} (\psi(x)+\psi(-x))}_{\rm even:~\hbox{$\psi^+$}}+ \underbrace{\frac{1}{2} (\psi(x)-\psi(-x))}_{\rm odd:~\hbox{$\psi^-$}} \\ \psi^+= \frac{1}{2} (1+{\cal P})\psi(x,t) \\ \psi^-= \frac{1}{2} (1-{\cal P})\psi(x,t)$$
READ MORE
Quantum Wave Functions
#physics
#quantum
#wave
$$\Phi(k,t)=\frac{1}{\sqrt{h}}\int\Psi(x,t){\rm e}^{-ikx}dx \\ \Psi(x,t)=\frac{1}{\sqrt{h}}\int\Phi(k,t){\rm e}^{ikx}dk \\ v_{\rm g}=p/m \\ E=\hbar\omega \\ \left\langle f(t) \right\rangle=\int\hspace{-1.5ex}\int\hspace{-1.5ex}\int\Psi^* f\Psi d^3V \\ \left\langle f_p(t) \right\rangle=\int\hspace{-1.5ex}\int\hspace{-1.5ex}\int\Phi^*f\Phi d^3V_p \\ \left\langle f(t) \right\rangle=\left\langle \Phi|f|\Phi \right\rangle \\ \left\langle \Phi|\Phi \right\rangle=\left\langle \Psi|\Psi \right\rangle=1$$
READ MORE
Shear Modulus
#physics
#mechanics
#shear modulus
$$M_{s} = \frac{F_{s} / A}{ {\Delta x} /L}=\frac{F_{s}/A}{\tan \theta}M_{s} = \frac{F_{s}/A}{\Delta x/L} = \frac{F_{s}/A}{\tan \theta}$$
READ MORE
Simple Harmonic Motion Acceleration
#physics
#mechanics
$$a = - \omega ^2 x = - \omega ^2 r\sin (\omega t)$$
READ MORE
Speed of Sound Waves in a Fluid
#physics
#mechanics
$$\upsilon = \sqrt {\frac{B}{\rho }}$$
READ MORE
The Compton Effect
#physics
#quantum
#Compton Effect
$$\lambda'=\lambda+\frac{h}{mc}(1-\cos\theta)=\lambda+\lambda_{\rm C}(1-\cos\theta)$$
READ MORE
The Schrödinger Equation
#physics
#quantum
$$-\dfrac{\hbar^{2}}{2m}\bigtriangledown ^{2} \psi +U\psi=E\psi = i\hbar \dfrac{\partial \psi}{\partial t} \\ H=p^2/2m+U, H\psi=E\psi \\ \psi(x,t)=\left(\sum+\int dE\right)c(E)u_E(x)\exp\left(-\frac{iEt}{\hbar}\right) \\ \displaystyle J=\frac{\hbar}{2im}(\psi^*\nabla\psi-\psi\nabla\psi^*) \\ \displaystyle\frac{\partial P(x,t)}{\partial t}=-\nabla J(x,t)$$
READ MORE
The Tunnel Effect
#physics
#quantum
$$\psi(x)=a^{-1/2}\sin(kx) \\ E_n=n^2h^2/8a^2m \\ \psi_1=A{\rm e}^{ikx}+B{\rm e}^{-ikx} \\ \psi_2=C{\rm e}^{ik'x}+D{\rm e}^{-ik'x} \\ \psi_3=A'{\rm e}^{ikx} \\ k'^2=2m(W-W_0)/\hbar^2 \ k^2=2mW \\ T=|A'|^2/|A|^2$$
READ MORE
The Uncertainty Principle
#physics
#quantum
$$(\Delta A)^2=\left\langle \psi|A_{\rm op}-\left\langle A \right\rangle|^2\psi \right\rangle=\left\langle A^2 \right\rangle-\left\langle A \right\rangle^2 \\ \Delta A\cdot\Delta B\geq \frac{1}{2} |\left\langle \psi|[A,B]|\psi \right\rangle| \\ \Delta E\cdot\Delta t\geq\hbar \\ \Delta p_x\cdot\Delta x\geq \frac{1}{2} \hbar \\ \Delta L_x\cdot\Delta L_y\geq \frac{1}{2} \hbar L_z$$
READ MORE
Velocity
#physics
#mechanics
#velocity
$$\upsilon = \upsilon _0 + at$$
READ MORE
Viscous Flow
#physics
#mechanics
#viscous flow
$$F = \eta \frac{{\upsilon A}}{z}$$
READ MORE
Youngs Modulus
#physics
#mechanics
#youngs modulus
$$\Upsilon = \frac{F/A}{\Delta L/L} =\frac{\text{Stress}}{\text{Strain}}$$
READ MORE
math
Fourier Series
#math
#fourier series
$$y(x)=c_{0}+\sum^{M}_{m=1}c_{m}\cos mx+\sum^{M^{'}}_{m=1}s_{m}\sin mx \\ c_{0}=\frac{1}{2\pi}\int^{\pi}_{-\pi}y(x) \mathrm{d} x \\ c_{m}=\frac{1}{\pi}\int^{\pi}_{-\pi}y(x) \cos mx \mathrm{d} x \\ s_{m}=\frac{1}{\pi}\int^{\pi}_{-\pi}y(x) \sin mx \mathrm{d} x$$
READ MORE
Fourier Transforms
#math
#fourier transforms
$$y(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \hat{y}(\omega) e^{i\omega t} \mathrm{d} \omega \\ \hat{y}(\omega)=\int_{-\infty}^{\infty} y(t) e^{-i\omega t} \mathrm{d} t$$
READ MORE
machine learning
Bellman Equation
#machine learning
$$v_{\pi}(s)=\sum_{a}\pi(a|s)\sum_{s^{'},r}p(s^{'},r|s,a)[r+\gamma v_{\pi}(s^{'})]$$
READ MORE
Jensen-Shannon Divergence JS-Divergence
#machine learning
$$JS(P||Q)=\frac{1}{2}KL(P||\frac{(P+Q)}{2})+\frac{1}{2}KL(Q||\frac{(P+Q)}{2})$$
READ MORE
KL-Divergence
#machine learning
$$KL(P||Q)=\sum_{x}P(x)\log(\frac{P(x)}{Q(x)})$$
READ MORE
Kullback-Leibler Divergence
#machine learning
#kl divergence
$$KL(P||Q)=\sum_{x}P(x)\log(\frac{P(x)}{Q(x)})$$
READ MORE
Support Vector Machine SVM
#machine learning
#svm
$$\max_{w,b} \frac{2}{||w||} \\ s.t.\ y_{i}(w^{T}x_{i} + b) \geq 1, i=1,2,...,m \\ L(w,b,\alpha)=\frac{1}{2}||w||^2 + \sum^{m}_{i=1}a_{i}(1-y_{i}(w^{T}x_{i} + b))$$
READ MORE
Category
math
physics
machine learning
nlp
cv
aigc
statistics
financial engineering
economics
cfa
Related Blogs
AI Assistant
Close
Chatbot
close
Bot
Hi ,
How can I help you today?
Send